• Title/Summary/Keyword: Architectural Walls

Search Result 409, Processing Time 0.035 seconds

A Study on the City Wall Ruins Preservation and Management of China (중국 성곽유적의 보존 및 관리)

  • Kang, Tai-Ho;Li, Ao-Fei
    • Journal of architectural history
    • /
    • v.26 no.5
    • /
    • pp.27-38
    • /
    • 2017
  • The main objective of this study is to analyze the preservation and management for the city wall ruins of China, and to find out the implications. Firstly, Chinese walls have experienced a process from demolition to protection. The walls of the historical value of the site are gradually being certified, and many walls ruins were designated as a conservation unit. Secondly, China's institutional system is based on the central government issued Cultural Relics P rotection Law and combined with the actual situation of local governments to establish a special law. Management System is Cultural Relics Bureau, the planning department, the garden department and the tourism sector joint implementation. Thirdly, through the study of Nanjing, Xian, Pingyao, Suzhou city wall ruins finding that perfect legislation and unified management system to help protect city wall ruins.

Cyclic loading tests for precast concrete cantilever walls with C-type connections

  • Lim, Woo-Young;Hong, Sung-Gul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.753-777
    • /
    • 2014
  • This study investigates the behavior of precast concrete cantilever wall systems with new vertical connections under cyclic loading. C-type steel connections for PC wall systems are proposed for the transfer of bending moments between walls in the vertical direction, whereas a shear key in the center of the wall is prepared to transfer shear forces by bearing pressure. The proposed connections are assembled easily because the directions of the slots are different at the edges of the walls. Structural performance characteristics such as the strength, ductility, and failure modes of test specimens were investigated. The longitudinal reinforcing steel bars, which are connected to the C-type connections, yielded first. Ultimate deformation was terminated owing to premature failure of the connections. The strength and deformation obtained from the cross-sectional analysis were generally similar to experimental data.

Semantic Analysis of Joseon Dancheong - related Terms in Literature Records (문헌에 기록된 조선시대 단청의 종류 관련 용어에 대한 고찰)

  • Koo, Uk-Hee
    • Journal of architectural history
    • /
    • v.27 no.6
    • /
    • pp.19-30
    • /
    • 2018
  • When identifying the dancheong during the Joseon Dynasty, a great number of the terms used [e.g., dancheong(丹靑), geumbyeok(金碧), danhwak(丹?), danbyeok(丹碧), dannok(丹綠), danchil(丹漆), hyuchil(?漆), hyudong(??), etc.] are found in literature records. However, the details are still veiled. This study investigated the characteristics of dancheong-related terms by analyzing their usages and contents based on literature records from the Joseon period. Architecturally, geumbyeok, danbyeok and dannok were used in temples, and dancheong was painted on walls. In the royal palace, danhwak was adopted while dancheong was also painted on these walls as well. Specifically, danchil was applied to the columns inside and outside buildings while hyudong was painted on rafter, walls and roof tiles. In addition, hyuchil was applied to the inside of the royal palace.

A Study on Techniques of the construction and Space Structure of Nam-hea city walls (남해읍성의 공간구성과 축조기법에 관한 연구)

  • Kwon, Soon-Kang;Lee, Ho-Yeol
    • Journal of architectural history
    • /
    • v.18 no.5
    • /
    • pp.59-80
    • /
    • 2009
  • The purpose of this study is to investigate the history, space structures, blueprint, and techniques of the construction of Nam-hea city walls. Nam-hea city walls were relocated in 1439 from Whagumhun-Sansung(火金峴山城) to the present site, nearby Nam-hea Um.(南海邑) The city walls were rebuilt after they were demolished during Japanese invasion on Korea in 1592 and their reconstruction was also done in 1757. At present, the city walls only partially remained due to the urbanization of the areas around them. A plane form of the City wall is a square, and the circumference os approximately 1.3km. According to the literature, the circumference of the castle walls is 2,876尺, the height is 13尺, and the width is 13尺 4寸. Hang-Kyo(鄕校). SaGikDan(社稷壇), YoeDan(厲壇), SunSo(船所) which is a harbor, as well as government and public offices such as Kaek-Sa(客舍) and Dong-Hun(東軒) existed inside the castle walls. Inside the castle walls were one well, five springs, one ditch, and one pond, and in the castle walls, four castle gates, three curved castle walls, and 590 battlements existed. The main government offices inside castle walls were composed of Kaek-Sa, Dong-Hun, and Han-Chung(鄕廳) their arrangements were as follows. Kaek-Sa was situated toward North. Dong-Hun was situated in the center of the west castle walls. The main roads were constructed to connect the North and South castle gate, and subsidiary roads were constructed to connect the East and West castle gate. The measurement used in the blueprint for castle wall was Pobaek-scale(布帛尺:1尺=46.66cm), and one side of it was 700尺. South and North gate were constructed in the center of South and North castle wall, and curved castle walls was situated there. One bastion was in the west of curved castle walls and two bastions were in the east of curved castle walls. The east gate was located in the five eighths of in the east castle wall. Two bastions were situated in the north, on bastion in the south, one bastion in the south, and four bastions in the west castle wall. The castle walls were constructed in the following order: construction of castle field, construction of castle foundation, construction of castle wall, and cover the castle foundation. The techniques used in the construction of the castle walls include timber pile(friction pile), replacement method by excavation.

  • PDF

Prism Compressive Strength of Non-structural Concrete Brick Masonry Walls According to Workmanship (시공정밀도에 따른 비구조용 콘크리트벽돌 조적벽체의 프리즘 압축강도)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • Prism compressive strength is the most influential parameter to evaluate the seismic performance of non-structural concrete brick masonry walls, and is affected by the practice and workmanship of masonry workers. This study experimentally investigates the influence of workmanship on prism compressive strength throughout the compressive test with prism specimens constructed according to masonry workmanship. To do this, the workmanship is categorized into good, fair, and poor conditions which are statistically evaluated with thickness and indentation depth of bed-joints. Then, the effect of workmanship on the structural properties of masonry prisms is evaluated by investigating relations between properties such as their compressive strength, elastic modulus and numerical parameters such as thickness, filling of bed-joints. This study demonstrates that the indentation depth is more important parameter for structural properties of masonry prisms and masonry prisms with loss in bed-joint area less than of 7% can be in fair condition.

Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls (PC 벽체 수직접합부의 개발 및 전단성능 평가)

  • Moon, Kyo Young;Kim, Sung Jig;Lee, Kihak;Kim, Yong Nam
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

A Basic Study on the Development of Filling Material using Seismic Retrofit of Masonry Architectural Wall Systems in Educational Facilities. (교육시설물의 조적치장벽체 내진보강에 적용 가능한 충전재 개발 기초연구)

  • Lee, Joo-Hyeong;Oh, Jun-Seok;Jeon, Sang-Sub;Son, Ki-Young;Na, Young-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • South Korea has long been without major earthquakes. But 317 public facilities have been damaged by Po-Hang earthquake. Among them, 103 educational facilities suffered 25.6 billion won worth of damage. This is the most damaging of public facilities. The earthquake damage was mainly centered on non-seismic retrofit educational facilities and masonry architectural wall systems installed on the outer walls of buildings. Therefore, the purpose of this study is to develop a filling material that can be applied to the non-seismic retrofit of masonry architectural wall systems installed on the outer walls of educational facilities. To achieve the objective, first, set the filling material requirements. Second, set the sequence model of experiments and prepare for the experiment. Third, after the experiment, analyze the results obtained through the experiment. Forth, the optimal filling material is selected by comparing the analyzed results with the requirements. As a results, E-S-X sample using epoxy resin were selected for the seismic retrofit of masonry architectural wall systems in educational facilities. In the future, this study can be used as a basic material for developing seismic reinforcement methods guidelines in domestic existing educational facilities.

  • PDF

Strength of Low Rise Structural Walls Using High Strength Concrete (고강도 콘크리트를 사용한 저층형 내력벽의 강도)

  • 윤현도;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.407-410
    • /
    • 1999
  • An experimental investigation to study the behavior of low rise structural walls using high strength concrete is presented. The test parameter included in the study were the level of constant axial load. The shear strength of walls is predicted by the design provision given in the current the American Concrete Institute Building Code ACI 318-95 and Architectural Institute Japan Code AIJ. The predictions are compared with the test results reported herein as well as those available in the literature.

  • PDF

Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls (조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답)

  • Han, Ji Min;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Thermal Performance Evaluation of Earth-Applied Trombe Wall by Simulation (흙을 이용한 트롬월의 열성능 시뮬레이션 평가)

  • Noh, J.H.;Kim, J.T.
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2004
  • Energy and environmental concerns accelerate the interest in passive solar heating in buildings, which utilizes solar energy through natural heat transfer. Moreover concerns about environmentally friendly materials were also increased. This study aims to evaluate the thermal performance of a Trombe wall built with earth. The thermal performance of the Trombe walls was analysed with results from computer simulations with TRNSYS 15. The thermal performance of the three types of Trombe wall was compared.: concrete. rammed earth. adobe. It was found that Trombe wall with the thermal storage wall of earth performed better than that of concrete. Rammed earth and adobe Trombe walls gained 4.7% and 12.8% more solar energy. respectively. than the concrete Trombe wall. In earth-applied Trombe walls. the energy gain by natural convection released from the airspace was about 75% of the total solar gains. that took 15% more than concrete Trombe wall. Rammed earth and adobe Trombe walls seem to be more suitable for buildings that use mostly in daytime. such as school, office and so on.