• Title/Summary/Keyword: Arc-crack

Search Result 101, Processing Time 0.034 seconds

반타원 표면균열의 피로성장 거동에 관한 연구

  • 최용식;양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.916-922
    • /
    • 1986
  • This paper presents the preliminary results of an experimental study on surface crack growth under fatigue loadings. The objective of this paper is to assess the effect of the initial crack size on crack propagation behaviors. Transparent PMMA plate speciments with shallow circular arc notch were used. Crack growth behaviors were observed and measured in two directions by travelling microscopes. The fatigue crack initiated at the deepest part on the initial arc shaped notch and then propagated to depth direction as well as spreading gradually along the notch tip. A considerable number of cycles was needed until the depth crack spreaded to the surface notch tip. When the fatigue crack reached the surface notch tip the crack front became an approximate semi-ellipse, primary semi-elliptical crack. Test results suggest that the relationships between fatigue crack growth rate and stress intensity factor range in both directions can be expressed by power law (Paris) and that relationship in width direction depends upon the crack ratios a$_{1}$/b$_{1}$, of the primary semi-elliptical crack. The relationship between the nondimensional crack lengths in both directions can be represented as the formula: (a/t)$^{n}$ =B(2b/W+A) where n and A are constants and B is seems to be depended upon the crack ratio a$_{1}$/b$_{1}$.

THE INDIRECT BOUNDARY INTEGRAL METHOD FOR CURVED CRACKS IN PLANE ELASTICITY

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.913-930
    • /
    • 2002
  • For curved crack problems in plane elasticity, subjected to the traction conditions on the crack faces, we present a system of boundary integral equations. The procedure is based on the indirect boundary integral method in terms of real variables. For efficient mathematical analysis, we decompose the singular kernel into the Cauchy singular part and the regular one. As a result, solvability of the presented system is proved and availability of the present approach is shown by the numerical example of a circular arc crack.

Effect of welding variables on the crack arrest toughness of thick steel plate (선급 극후물재의 취성균열 전파 정지 인성에 미치는 용접변수의 영향)

  • Ryu, Kang-Mook;An, Gyu-Baek;Kim, Tae-Su;Lee, Tae-Yeung;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.103-103
    • /
    • 2009
  • As the size of containership increased over 14,000TEU, thick steel plate with high strength has been used. The plate thickness increased over 70mm and yield strength of the steel plate was around $47kg_f/mm^2$. Many researchers reported that the thick welded plate has low crack arrest toughness. They noticed the crack arrest ability is dependent on the plate thickness. In other words, brittle crack propagates straightly along the welded line and make abrupt fracture in the thick plate which causes low $K_{ca}$. In this study, the other factors, especially welding heat input, to cause low crack arrest toughness was investigated for thick steel plate welds. EH grade steel plates were used in this study and 50 to 80 thick plates were tested to confirm thickness sensitivity. Electro gas welding (EGW) and flux cored arc welding (FCAW) were adopted to prepare the welded joints. Temperature gradient ESSO test was performed to measure $K_{ca}$ values with the variation of welding variables. As a result of this study, regardless of plate thickness, welding heat input to cause welding residual stress around crack path is a key factor to control the brittle crack propagation in welded joints.

  • PDF

A Welding Characteristics of Large Caliber-Thick Plate Pressure Vessel Low Alloy Steel (Mn-Mo) (대구경-후판 압력용기용 저 합금강(Mn-Mo)의 용접특성)

  • Ahn, Jong-Seok;Park, Jin-Keun;Yoon, Jae-Yeon
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.10-14
    • /
    • 2012
  • Recently the low alloy steel plate made with manganese-molybdenum is used widely in steam drum and separator of the new coal-fired power plant boiler. This material is suitable for the vapor storage of high pressure and high temperature. The high temperature creep strength of Mn-Mo alloy is higher than the carbon plate(SA516) that used in the subcritical pressure boiler. It reduces the thickness of the pressure vessel and makes the lightweight possible. Recently in the power plant boiler operation and production process, the damage has happened frequently in the heat affected zone and base material according to the hydrogen crack and delayed crack. This paper describes the research result about the damage case experienced in the boiler steam drum production process and present the optimum manufacture method for the similar damage prevention of recurrence.

Microstructure and CTOD (crack tip opening displacement) of Deposit Weld Metal in 30 mm Thick Plate

  • Lee Hae-Woo;Kim Hyok-Ju;Park Jeong-Ung;Kang Chang-Yong;Sung Jang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.642-648
    • /
    • 2004
  • The microstructure and crack tip opening displacement (CTOD) of deposit weld metal were investigated for a 30 mm- thick plate welded with flux cored arc welding (FCAW) and submerged arc welding (SAW) processes. The CTOD test was carried out both as welded condition and as stress-relieved specimen by local compression. The crack growth rates in FCAW were faster than those in a SAW, and the acicular ferrite content by the SAW process was increased relatively more than that by the FCAW process. The fatigue crack growth rate in a welded specimen was faster than that in locally compressed specimen. The CTOD value of locally compressed specimens was lower than that of as welded specimen. Furthermore, the CTOD value tested with the SAW process was higher than that tested with the FCAW process.

Critical Stress for a Crack Inclined to Princinal Material Direction in Orthotropic Material (직방성체에서 재료주축과 경사진 균열의 임계응력)

  • Lim, Won-Kyun;Cho, Hyoung-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1021-1026
    • /
    • 2003
  • The problem of predicting the fracture strength behavior in orthotropic plate with a crack inclined with respect to the principal material axes is analyzed. Both the load to cause fracture and the crack direction of crack growth arc of interest. The theoretical results based on the normal stress ration theory show significant effects of biaxial loading and the fiber orientation on the crack growth angle and the critical stress. The additional term in the asymptotic expansion of the crack tip stress field appears to provide more accurate critical stress prediction.

  • PDF

Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels (1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

Marco and Microscopic Observations of Fatigue Crack Growth Behavior in API 2W Gr. 50 Steel Joints (API 2W Gr. 50 강재 용접부의 피로균열전파거동의 거시적 및 미시적 관찰)

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.73-80
    • /
    • 2012
  • It is well known that a considerable amount of scatter is shown in experimental results relating to fatigue crack growth even under identical and constant amplitude cyclic loading conditions. Moreover, flux cored arc welding (FCAW) is a common method used to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the macro- and microscopic observations of the fatigue crack growth (FCG) behavior of the FCAWed API 2W Gr. 50 steel joints typically applied for offshore structures. In order to clearly understand the randomness of the fatigue crack growth behavior in the materials of three different zones, the weld metal (WM), heat affected zone (HAZ), and base metal (BM), experimental fatigue crack growth tests for each of five specimens were performed on ASTM standard compact tension (CT) specimens under constant amplitude cyclic loading. Special focus was placed on the fatigued fracture surfaces. As a result, a different behavior was observed at the macro-level, depending on the type of material property: BM, HAZ, or WM. The variability in the fatigue crack growth rate for WM was higher than that of BM and HAZ.

Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal (잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발)

  • Choi, Kee-Young;Kim, Chan;Kim, Young-Pil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF