• Title/Summary/Keyword: Arc plasma

Search Result 556, Processing Time 0.03 seconds

Numerical simulation of VOC decomposition in an arc plasma reactor (수치해석 기법을 이용한 아크 플라즈마 반응기의 VOCs 분해성능 평가연구)

  • Park, Mi-jeong;Jo, Young-min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.1-7
    • /
    • 2016
  • A range of techniques have been being developed to remove the volatile organic compounds from paining processes. High temperature decomposition of harmful VOCs using arc plasma has recently been proposed, and this work analyzed the extreme hot process by computer-aided fluid dynamics prior to the reactor design. Numerical simulations utilized the conservation equations of mass and momentum. The simulation showed that the fluid flowed down along the inner surface of the centrifugal reactor by forming intensive spiral trajectories. Although the high temperature gas generated by plasma influences the bottom of the reactor, no heat transfer in radial direction appeared. The decomposition efficiency of a typical VOCs, toluene, was found to be a maximum of 67% across the reactor, which was similar to the value (approximately 70%) for the lab-scale test.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

Preparation of Nickel Nanopowder using the Transferred Arc Plasma for MLCCs (이송식 아크 플라즈마를 이용한 MLCC용 니켈 나노분말의 합성)

  • Jung, Da-Woon;Oh, Seung-Min;Park, Dong-Wha
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.701-706
    • /
    • 2008
  • Nano-sized nickel powders were prepared by evaporating the bulk nickel metarial using transferred arc thermal plasma. Nitrogen gases are easily dissociated to atomic nitrogen in thermal plasma and they are quickly dissolved in molten nickel. Super-saturated atomic nitrogen in molten nickel is recombined to nitrogen gas because of the relatively low temperature of nickel surface. Generally, the recombine reaction of atomic nitrogen is exothermic, so bulk nickel is quickly evaporated to nickel vapor due to the thermal energy of recombine reaction. The particle size of nickel powder was controlled by $N_2$ used as the diluting gas. It was observed that as the diluting gas flow rate was increase, the particle size was decreased and the particle size distribution was narrowed. The average particle size at 250 l/min of the diluting gas was 202 nm analyzed by means of the particle size analyzer (PSA).

Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마를 이용한 사불화탄소 저감)

  • Lee, Chae Hong;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.485-490
    • /
    • 2011
  • Tetrafluoromethane($CF_4$) has been used as etching and chamber cleaning gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetime which causes the global warming effect. We have developed a waterjet gliding arc plasma system in which plasma is combined with waterjet and investigated optimum operating conditions for efficient $CF_4$ destruction through enlarging discharge region and producing large amount of OH radicals. The operating conditions are waterjet flow rate, initial $CF_4$ concentration, total gas flow rate, specific energy input. Through the parametric studies, the highest $CF_4$ destruction of 97% was achieved at 2.2% $CF_4$, 7.2 kJ/L SEI, 9 L/min total gas flow rate and 25.5 mL/min waterjet flow rate.

Optimal Design of Atmospheric Plasma Torch with Various Swirl Strengths (스월 강도에 의한 상압 플라즈마 토치의 최적 설계)

  • Moon, J.H.;Kim, Youn-J.;Han, J.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1736-1741
    • /
    • 2003
  • The characteristics plasma flow of an atmospheric plasma torch used for thermal plasma processing is studied. In general, it is produced by the arc-gas interactions between a cathode tip and an anode nozzle. The performance of non-transferred plasma torch is significantly dependent on jet flow characteristics out of the nozzle. In this work, the distribution of gas flow that goes out to the atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric plasma torch. Numerical analysis is carried out with various angles of an inlet flow which can create different swirl flow fields. Moreover, the size of plasma plume is experimentally depicted.

  • PDF

THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS

  • Seo, Jun-Ho;Hong, Bong-Guen
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.9-20
    • /
    • 2012
  • A brief review on the thermal plasma synthesis of nano-sized powders is presented according to the application materials, such as, metals, ceramics, glasses, carbonaceous materials and other functional composites, such as, supported metal catalyst and core-shell structured nano materials. As widely adopted plasma sources available for thermal plasma synthesis of nanosized powders, three kinds of plasma torches, such as transferred and non-transferred DC and RF plasma torches, are introduced with the main features of each torch system. In the basis of the described torch features and the properties of suggested materials, application results including synthesis mechanism are reviewed in this paper.

The Present-Day State and Outlooks of Using Plasma-Energy Technologies in Heat-and-Power Industry

  • Karpenko, E.I.;Messerle, V.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.1-4
    • /
    • 2001
  • Urgency of using plasma-energy technologies in power industry, is outlined, increasing of economical efficiency, decreasing of energy consumption and decreasing of environmental pollution, are shown, scientific and technical bases for plasma-energy technologies of fuel utilisation, are designed, results of theoretical, experimental and rig investigations of processes of plasma ignition, gasification, thermochemical preparation for burning and combined processing of coals, are presented, results of realisation of plasma technologies of residual-oil-free (mazout) pulverised-coal boiler kindling, lighting of torch and stabilisation of luid slagging in furnaces with removal of fluid slag, are described.

  • PDF

Filtered Plasma Deposition and MEVVA Ion Implantation

  • Liu, A.D.;Zhang, H.X.;Zhang, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.46-48
    • /
    • 2003
  • The modification of metal surface by ion implantation with MEVVA ion implanter and thin film deposition with filtered vacuum arc plasma device is introduced in this paper. The combination of ion implantation and thin film deposition is proved as a better method to improve properties of metal surface.

The effect of sodium aluminate concentration of oxide layer coated at AZ31 magnesium alloy by plasma electrolytic oxidation (AZ31 마그네슘 합금의 PEO 처리시 Sodium Aluminate 전해질이 산화막 특성에 미치는 영향)

  • Lee, Jong-Seok;Baek, Hong-Gu;Kim, Seong-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.311-312
    • /
    • 2012
  • PEO(Plasma Electrolytic Oxidation) 방법으로 인한 마그네슘 합금의 산화막 코팅시 Sodium Aluminate의 역할을 알아보았다. 전해액 내에 Sodium Aluminate 의 농도가 증가할수록 Plasma arc 발생에 필요한 전압의 상승이 빨라졌으며 그 산화막이 치밀해짐을 알 수 있었다. 또한 치밀한 산화막의 기공률은 분석하여 이를 내식성 결과와 비교함으로써 산화막의 기공률이 내식성에 미치는 영향을 고찰해보았다.

  • PDF

Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 Monostatic 레이다 단면적 측정)

  • Lee, Hyunjae;Jung, Inkyun;Ha, Jungje;Shin, Woongjae;Yang, Jin Mo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • In this paper, reduction of monostatic RCS by DBD plasma is measured. For the calibration of monostatic RCS, S-parameters of two metallic plate in different sizes are used and the result is within 0.4 dB error. Metallic plate is put behind DBD plasma generator for measuring reduction of monostatic RCS by DBD plasma. To prevent arc discharge between metallic plate and DBD plasma generator, measurement is progressed spacing the interval between metallic plate and DBD plasma generator. As a result, maximum reduction of monostatic RCS is about 3 dB at 7.4 GHz.