• Title/Summary/Keyword: Arc behavior

Search Result 351, Processing Time 0.025 seconds

Droplet deformability and emulsion rheology: steady and dynamic behavior

  • Saiki Yasushi;Prestidge Clive A.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.191-198
    • /
    • 2005
  • The static and dynamic rheological behavior of concentrated sodium dodecylsulfate (SDS) stabilized, deformability controllable polydimethylsiloxane (PDMS) emulsions is reported and comparisons made with silica (hard sphere) suspensions. Steady-mode measurements indicate 'hard' (viscoelastic) droplets behave as hard spheres, while 'soft' (viscous) droplets induce structural flexibility of the emulsion against shear. Dynamic-mode measurements reveal that viscoelasticity of droplets provides the great magnitude of elasticity for the 'hard' emulsion, while formation of planar films between droplets is the origin of the elasticity of 'soft' emulsions. Combination of steady and dynamic rheological behavior has enabled depiction of droplet structure evolution in relation to the shear stress applied, especially by taking advantage of the normal force that reflects the transient deformation of droplets.

PEO Film Formation Behavior of AZ31 Mg Alloy under Pulse Current (펄스 전류 하에서 AZ31 마그네슘 합금의 플라즈마전해산화 피막의 형성 거동)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.5
    • /
    • pp.292-298
    • /
    • 2022
  • In this study, PEO (plasma electrolytic oxidation) film formation behavior of AZ31 Mg alloy under application of 300 Hz pulse current was studied by the analyses of V-t curve, arc generation behavior, PEO film thickness and morphology of PEO films with treatment time in 0.05 M NaOH + 0.05 M Na2SiO3 + 0.1 M NaF solution. PEO films was observed to grow after 10 s of application of pulse current together with generation of micro-arcs. PEO film grew linearly with treatment time at a growth rate of about 5.58 ㎛/min at 200 mA/cm2 of pulse current but increasing rate of film formation voltage became lowered largely with increasing treatment time after passing about 250 V, suggesting that resistivity of PEO films during micro-arc generation decreases with increasing film formation voltage at more than 250 V.

Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions (모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구)

  • Jeong, Hwa-Rang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.559-570
    • /
    • 2023
  • The corrosion of structural steel used in the construction industry is increasing due to the industrialization where many aggressive ions released in the atmosphere. Therefore, in the present study Al coating was deposited by arc and plasma arc thermal spray process and compared their effectiveness in simulated weathering condition i.e. Society of Automotive Engineers(SAE) J2334 solution which mostly contain Cl- and CO32- ions. Different analytical techniques have been used to characterize the coating and draw the corrosion mechanism. The Al coating deposited by plasma arc thermal spray process exhibited uniform, dense and layer by layer deposition resulting higher bond adhesion values. The open circuit potential(OCP) of Al coating deposited this process is exhibited more electropositive values than arc thermal spray process in SAE J2334 solution with immersion periods. The total impedance of plasma arc thermal spray process exhibited higher than arc thermal spray process. The corrosion rate of the plasma arc thermal sprayed Al coating is reduced by 20% compared to arc thermal spray process after 23 days of immersion in SAE J2334 solution.

Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding (MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석)

  • Ku Jin-Mo;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

Photo-Degradation Behavior of Silk Fabrics (견직물의 광열화 거동)

  • Lee, Hack-Jung;Kwon, Young-Suk;Jang, Jeong-Dae;Lee, Sang-Joon;Cho, Hyun-Hok
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.37-42
    • /
    • 2006
  • Researches to preserve and restore the remaining fabrics as costume heritages have been carried out. In this study, in order to artificially restore an excavated silk fabrics, degummed silk fabrics and safflower dyed silk fabrics were prepared for an experiment. These fabrics were photo-degraded by the Xenon arc beam to have various strength retention(100%, 80%, 60%, 40%, 20%). The fine structure and physical properties of Xenon arc treated fabrics were investigated with various techniques such as tensile test, weight loss, wide-angle X-ray diffraction, yellowness, color, SEM etc. Tensile strength and the crystal diffraction intensity of silk fabrics decreased as Xenon arc hem treatment time increased. Weight loss increased slightly. Strength retention was decreased as the Xenon arc beam treatment time goes by. (Yellowness of the undyed silk fabrics and $L^*$ of the dyed silk fabrics increased. Whiteness of the undyed silk fabrics and $b^* of the dyed silk fabrics decreased.) SEM results of the silk fabrics treated Xenon arc beam show that surface was a little damaged.

Impact of Anti-Reflective Coating on Silicon Solar Cell and Glass Substrate : A Brief Review

  • Zahid, Muhammad Aleem;Khokhar, Muhammad Quddamah;Cho, Eun-Chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • The most important factor in enhancing the performance of an optical device is to minimize reflection and increasing transmittance of light for a broad wavelength range. The choice of appropriate coating material is crucial in decreasing reflection losses at the substrate. The purpose of this review is to highlight anti-reflection coating (ARC) materials that can be applied to silicon solar cell and glass substrate for minimizing reflection losses. The optical and electrical behavior of ARC on a substrate is highly dependent on thickness and refractive index (RI) of ARC films that are being deposited on it. The coating techniques and performance of single and multi-layered ARC films after coated on a substrate in a wide range of wavelength spectrum will be studied in the paper.

A Study on Dynamic Characteristics of Welding voltage and Welding Current At GMAW (GMA 용접에서 전압과 전류의 동특성에 관한 연구)

  • Kim, Myun-Hee;Choi, Young-Geun;Lee, Moon-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.207-213
    • /
    • 2001
  • Welding variables and condition in gas metal arc welding (GMAW) effect on the weld quality and productivity, extensive research efforts have been made to analyze the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the chararcteristic equations of the power supply. wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

  • PDF

Recycling of Ti Turning Scraps for Production of Consumable Arc Electrode (아크용(用) 소모성(消耗性) 전극(電極) 제조(製造)를 위한 타이타늄 선삭(旋削) 스크랩의 재활용(再活用))

  • Oh, Jung-Min;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.58-64
    • /
    • 2012
  • Ti button type ingots were prepared by recycling of Ti turning scraps using vacuum arc melting process for production of consumable arc electrode. The behavior of impurities such as Fe, W, O, and N in the Ti button ingots was investigated and the properties of the Ti button ingots were also evaluated. In the case of oxygen gaseous impurity, the oxygen layers on the surface of the Ti turning scraps were easily removed by the first vacuum arc melting. On the other hand, the solute oxygen in the Ti turning scraps was not removed by the next melting. In the case of Fe, major impurity in the Ti turning scraps, the removal degree in the final Ti button ingot refined by vacuum arc melting for 20 minutes was approximately 43 %, which is due to the vapor pressure difference between Ti and Fe. As a result, the Ti button ingots with ASTM grade 3 could be obtained by multiple vacuum arc melting from the Ti turning scraps. Therefore, it was confirmed that the preparation of consumable electrode for vacuum arc remelting could be possible by recycling of Ti turning scraps.

Development of Arc-Fault Detection Technique (아크고장 검출기술의 개발)

  • Lim, Young-Bae;Jeon, Jeong-Chay;Park, Chan-Eom;Bae, Seok-Myeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1810-1816
    • /
    • 2009
  • In 2007, 9,128 fires were actually caused by electrical faults and these fires resulted in 29 deaths and 262 injuries. Arc-faults were one of the major causes of these fires. When an unintended arc-fault occurs, it generates intense heat that can easily ignite surrounding combustibles. But, because conventional circuit breakers only respond to overloads, short circuits, and leakage currents, the breakers do not protect against arcing conditions. This paper presents results obtained in experiments on ignition behavior of wire by series arc fault currents and techniques developed to detect the arc-faults. The developed technique was tested after installation to make sure that they are working properly and protecting the circuit. If the developed arc fault detection technique is applied, the electrical fires caused by an arc-fault can be reduced.

Influence of Deposition Temperature on the Film Growth Behavior and Mechanical Properties of Chromium Aluminum Nitride Coatings Prepared by Cathodic Arc Evaporation Technique

  • Heo, Sungbo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.139-143
    • /
    • 2021
  • Cr-Al-N coatings were deposited onto WC-Co substrates using a cathodic arc evaporation (CAE) system. CAE technique is recognized to be a very useful process for hard coatings because it has many advantages such as high packing density and good adhesion to metallic substrates. In this study, the influence of deposition temperature as a key process parameter on film growth behavior and mechanical properties of Cr-Al-N coatings were systematically investigated and correlated with microstructural changes. From various analyses, the Cr-Al-N coatings prepared at deposition temperature of 450℃ in the CAE process showed excellent mechanical properties with higher deposition rate. The Cr-Al-N coatings with deposition temperature around 450℃ exhibited the highest hardness of about 35 GPa and elastic modulus of 442 GPa. The resistance to elastic strain to failure (H/E ratio) and the index of plastic deformation (H3/E2 ratio) were also good values of 0.079 and 0.221 GPa, respectively, at the deposition temperature of 450℃. Based on the XRD, SEM and TEM analyses, the Cr-Al-N coatings exhibited a dense columnar structure with f.c.c. (Cr,Al)N multi-oriented phases in which crystallites showed irregular shapes (50~100nm in size) with many edge dislocations and lattice mismatches.