

ISSN 2288-8403(Online)

한국표면공학회지 *J. Surf. Sci. Eng.* Vol.55, No.5, 2022. https://doi.org/10.5695/JSSE.2022.55.5.292

# 펄스 전류 하에서 AZ31 마그네슘 합금의 플라즈마전해산화 피막의 형성 거동

문성모<sup>a,b\*</sup>

°한국재료연구원 나노표면재료연구본부, b과학기술연합대학원대학교 신소재공학과

### PEO Film Formation Behavior of AZ31 Mg Alloy under Pulse Current

#### Sungmo Moon<sup>a,b\*</sup>

<sup>a</sup>Surface Technology Division, Korea Institute of Materials Science, Republic of Korea <sup>b</sup>Advanced Materials Engineering, University of Science and Technology, Republic of Korea

(Received 24 October, 2022 ; revised 26 October, 2022 ; accepted 27 October, 2022)

#### Abstract

In this study, PEO (plasma electrolytic oxidation) film formation behavior of AZ31 Mg alloy under application of 300 Hz pulse current was studied by the analyses of V-t curve, arc generation behavior, PEO film thickness and morphology of PEO films with treatment time in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution. PEO films was observed to grow after 10 s of application of pulse current together with generation of micro-arcs. PEO film grew linearly with treatment time at a growth rate of about 5.58  $\mu$ m/min at 200 mA/cm<sup>2</sup> of pulse current but increasing rate of film formation voltage became lowered largely with increasing treatment time after passing about 250 V, suggesting that resistivity of PEO films during micro-arc generation decreases with increasing film formation voltage at more than 250 V.

Keywords : Plasma electrolytic oxidation; AZ31 Mg alloy; Anodic oxide film; Pulse current.

# 1. 서 론

AZ31 마그네슘 합금은 판재로 성형 가능한 합 금으로서 높은 비강도, 치수 안정성, 진동 흡수성 및 전자파 차폐능 등의 우수한 특성으로 인하여 자동차, 항공기, 레저용품, 주방용품, 스피커 진동 판 및 케이스류 소재로 각광을 받고 있다. 마그네 슘은 구조용 금속 중 이온화 경향이 가장 높아서 산성용액 또는 염소이온이 포함된 중성용액에서 빠르게 부식되는 문제를 나타낸다. 따라서 마그네 슘 합금을 산업적으로 이용하기 위해서는 마그네 슘 합금의 낮은 내식성의 문제를 해결해야 한다. 특히 마그네슘 합금은 우수한 기계적 물성을 확보 하기 위하여 다량의 합금원소가 첨가되어 있어서 갈바닉 커플링에 의해 부식이 쉽게 가속된다. 따 라서 자연산화피막만으로는 내식성의 향상에 한 계가 있다.

마그네슘 표면에 내식성을 획기적으로 높일 수 있는 방법으로는 마그네슘 합금 소재 위에 보호 성 피막을 만들어주는 표면처리법이 있다. 마그네 슘 합금의 내식성을 향상시킬 수 있는 화학적 표 면처리법으로는 제품을 용액 중에 침지시켜 안정 된 화합물 층을 형성시켜 주는 화성처리법 [1-3], 용액 중에서 전기에너지를 인가하여 두꺼운 산화 피막을 인위적으로 두껍게 형성시켜 주는 아노다 이징법 및 플라즈마전해산화법 (PEO, Plasma Electrolytic Oxidation) 등이 있다. 화성처리법

<sup>\*</sup>Corresponding Author: : Sungmo Moon Surface Technology Division, Korea Institute of Materials Science, Tel: +82-55-280-3549; Fax: +82-55-280-3570 E-mail: sungmo@kims.re.kr

은 전착도장과 함께 사용하여 저렴한 비용으로 높 은 내식성을 얻을 수 있는 장점이 있다. 마그네슘 합금의 PEO처리는 제품에 높은 전압을 인가하여 표면 산화피막의 유전체 파손을 일으킴과 동시에 아크의 발생으로 고온의 플라즈마 분위기에서 단 단하고 두꺼운 산화피막을 만들어주는 방법이다. PEO피막의 물성 및 성장 특성은 전해질의 조성에 크게 영향을 받으며, 규산이온 [4-7]. 수산화 이온 [7,8], 불소이온 [10-12], 탄산이온 [14] 및 인산 이온 [15-18]의 영향에 대한 연구가 진행되어 왔 다. 이러한 많은 연구가 진행되어 왔음에도 PEO 피막의 형성 및 성장기구에 대한 이해는 여전히 부족한 실정이다. 특히 피막의 형성전압과 성장속 도의 관계 그리고 피막의 구조와 유전체 파손의 관계에 대한 고찰은 충분하게 이루어지지 않았다.

본 연구에서는 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF 용액에서 300 Hz, 200 mA/cm<sup>2</sup>의 펄스전류를 AZ31 마그네슘 합금에 인가하고 처리 시간에 따른 PEO 피막의 형성거동을 피막형성 전 압, 아크의 발생 양상, 피막의 두께 및 미세구조를 관찰하여 연구하였다. 또한 얻어진 실험결과들을 바 탕으로 PEO피막의 형성전압과 성장속도의 관계 및 PEO피막의 구조와 유전체 파손의 관계에 대하여 고 찰하였다.

#### 2. 실험방법

본 연구에서 사용된 시편은 두께 1mm의 AZ31 마그네슘 합금 판재 (wt.%, Al 2.94, Zn 0.8, Mn 0.3, Si < 0.1, Fe < 0.005, Cu < 0.05, and Mg balance)를 약 10 mm x 80 mm 크기로 절 단한 후 표면을 SiC paper 및 knife-abrading method [19]로 연마한 후 시편의 한쪽 끝을 마스 킹 데이프로 감아서 약 15 cm<sup>2</sup>의 면적이 노출되도 록 마스킹 후 실험에 사용되었다. 사용된 플라즈마 전해산화 용액은 3 L의 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF이었으며, 상대 전극으로는 스테인리스 판을 사용하였다. 전해질은 이중 재킷 구조의 유리 비커 내에서 냉각액을 순화시켜 20 ℃ 로 유지한 후 실험을 시작하였고, PEO 처리 시 마 그네틱 스터링으로 30 ℃가 넘지 않도록 전해질의 온도를 유지하였다. 플라즈마전해산화 실험에 사 용된 펄스 전류는 300 Hz, 양극전류밀도 rms 200 mA/cm<sup>2</sup> 및 음극전압은 50 V로 고정된 형태로 설 정되었다. 플라즈마전해산화 피막 처리된 시편은 수돗물로 세척 후 air gun으로 건조하였다. 플라 즈마전해산화 시 시편 표면은 디지털 카메라도 촬 영되었으며, 피막의 두께는 코팅 두께 측정 방치 (Fisher, ISOSCOPE FMP10)를 이용하여 측정하 였고, 피막의 표면 및 단면의 미세구조는 주사전자 현미경(Scanning Electron Microscopy, JSM-6610LV)을 이용하여 관찰하였다.

#### 3. 실험결과 및 고찰

그림 1은 AZ31 마그네슘 합금 소재에 200 mA/ cm<sup>2</sup>, 300 Hz펄스 전류를 인가했을 때 시간에 따 른 전압의 변화를 보여주는 결과이다. 펄스 전류 인가 초기에는 14 V/s의 속도로 매우 빠르게 전압 이 증가하다가 약 12초 이후 전압의 증가 속도가 느려져 약 1.4 V/s으로 증가한 후 다시 약 80 초 이후에는 0.2 V/s로 더 느리게 증가하였다. 그리고 약 160초 이후에는 전압증가가 거의 일어나지 않 고 일정한 값을 나타내었다. 전류인가 초기 빠르게 전압이 증가하는 것은 장벽형 피막의 성장이 일어 나기 때문이며, 약 12초 후 전압의 증가속도가 느 려지는 것은 아크가 발생하여 다공성의 PEO피막 이 성장하기 때문으로 해석할 수 있다. 80초 이후 피막형성전압이 다시 감소하는 이유는 아크의 발 생 거동 (그림 2) 및 형성된 PEO피막의 구조를 관 찰한 결과 (그림 5 및 6)를 토대로 토의될 것이다.

그림 1에서 약 160초 이후 전압증가가 거의 일 어나지 않은 것은 그림 2(n)과 2(o)에서 보는 것처 럼 아크의 발생 거동이 크게 변하지 않은 사실로 설명할 수 있다. 즉 정전류 모드로 PEO 처리 시



Fig. 1. Plot of film formation voltage of AZ31 Mg alloy with time at 200 mA/cm<sup>2</sup> of 300 Hz pulse current in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution.

가해지는 전압의 크기는 피막의 유전체 파손 저항 에 비례하며 피막의 유전체 파손은 아크의 크기, 색상 및 개수를 결정할 것이다, 따라서 아크의 크 기 및 개수가 일정하게 나타난 180 초 ~ 240 초 사이에서는 피막의 성장이 일어나더라도 피막의 유전체 파손저항이 증가하지 않아서 피막 형성전 압의 증가가 일어나지 않는다고 할 수 있다.

한편, PEO피막의 유전체 파손 저항은 피막의 구 조와도 관계되어 있을 것으로 판단된다. 피막의 구조와 유전체 파손 저항에 대한 토의는 그림 6에 서 보다 심도 있게 이루어질 것이다.

그림 2는 AZ31 마그네슘 합금 소재에 200 mA/ cm<sup>2</sup>, 300 Hz펄스 전류를 인가 시 시간에 따라 시 편 표면에서 발생된 아크의 양상을 보여주는 결 과이다. 펄스 전류 인가 초기 약 8초까지는 아크 가 발생하지 않고 가스만 발생되었고, 약 10초 이 후에는 미세한 아크가 발생하여 시편 전체 표면이 붉은 색상을 띠었다. 그리고 약 30초 후에는 주황 색의 큰 아크들이 국부적으로 뚜렷하게 나타났고, 전류인가 시간에 따라 커다란 주황색 아크의 수가 점차 증가하다가 약 80초 이후에는 전 표면에서 균일하게 발생되었다.

그림 3은 AZ31 마그네슘 합금 소재에 200 mA/ cm<sup>2</sup>, 300 Hz펄스 전류를 인가하여 얻은 PEO 피 막의 두께를 시간에 따라 도시한 결과이다. PEO 피막의 두께는 약 0.093 µm/s의 속도로 선형적으 로 증가하였으며, 그림 4에서 외삽법으로 얻은 피 막의 성장이 시작되는 시간은 약 9.9초로 얻어졌 다. 그림 2에서 보면 아크의 발생이 약 10초부터 시작되고 그림 3에서 외삽법으로 얻은 PEO 피막 의 두께가 두꺼워지기 시작하는 시간과 거의 일치 함을 알 수 있다. PEO 피막의 성장속도 0.093 µm /s를 분당 성장속도로 환산하면 5.58 µm/min이 다. 황산 아노다이징에서 30 mA/cm<sup>2</sup>의 직류를 인가 시 얻을 수 있는 1 µm/min의 양극산화피막 의 성장속도와 비교해 보면 매우 빠른 피막 성장 속도라 할 수 있다. 200 ~ 300 V의 높은 전압 및 100 ~ 300 mA/cm<sup>2</sup>의 고전류밀도 하에서 성장 시키는 PEO공정의 특성상 같은 두께의 피막을 얻 기 위해서는 아노다이징법에 비해서 5 ~10 배의 전력량이 소모된다. 반면에 피막의 성장속도를 3 ~ 6배 빠르게 할 수 있으며, 용액의 냉각에 상대적 으로 적은 량의 에너지를 사용하는 장점이 있다.

한편 PEO피막의 전류효율을 황산아노다이징 법과 비교해 보면, 황산 아노다이징 시 200 mA/ cm<sup>2</sup>의 직류를 인가할 경우 전류효율이 변하지 않 는다고 가정하면 약 6.67 µm/min의 성장속도로 계산된다. 따라서 본 연구에서 얻어진 PEO피막의 성장속도 5.58 µm/min과 비교해 보면, PEO피막 의 형성 효율은 황산 아노다이징 피막 형성효율의 약 83.5%라고 할 수 있다.

산성용액을 사용하는 아노다이징 공정의 경우 100 mA/cm<sup>2</sup> 이상으로 가할 경우 다량의 열 발생 으로 용액의 온도가 과다하게 오르고 그 결과 산 에 의한 반응이 급격하게 진행되어 형성된 산화피 막의 물성이 급격하게 저하되는 문제가 있다. 반 면에 PEO 공정의 경우 알칼리 용액을 사용하기에 다량의 열 발생으로 용액의 온도가 올라가더라도 화학반응에 의한 피막의 손상이 거의 일어나지 않 는다. 따라서 PEO공정은 용액온도에 크게 구애받 지 않고 높은 전류밀도를 인가하여 빠르게 성장시 킬 수 있는 장점이 있다.

한편, 용액의 온도가 약 60 ~ 70 ℃ 이상으로 올 라가고 인가전압이 과다하게 높을 경우 PEO공정 에서도 아크가 국부적으로 집중되어 피막이 손상 되는 버닝이 일어날 수 있다. 그러한 버닝현상은



Fig. 2. Digital photographs of AZ31 Mg alloy with time at 200 mA/cm<sup>2</sup> of 300 Hz pulse current in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution.



Fig. 3. PEO film thickness formed on AZ31 Mg alloy with film formation voltage at 200 mA/cm<sup>2</sup> of 300 Hz pulse current in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution.

시편의 재질 및 용액의 조성에 따라 발생하는 정 도가 다르다. 따라서 작업조건 설정 시 시편의 재 질에 따라 인가 전류밀도, 인가전압 및 처리 시간 을 제어하여 국부적 버닝이 일어나지 않도록 제어 해야 한다.

그림 3은 PEO 피막의 두께와 전압의 관계를 보 여주는 결과이다. 그림 1에서 보면, 약 80 초 이후 전압의 증가속도가 현저하게 느려지다가 약 160 초 이후에는 전압증가가 거의 일어나지 않는다. 한편 PEO피막의 성장은 그림 3에서 보는 것처럼 전압증가 속도가 느려지는 것과 관계없이 같은 속 도로 일어나고 있음을 알 수 있다. PEO 피막의 형 성전압은 피막의 두께를 알려주는 지표로 사용할 수 있다. 그림 4에서 표시한 것처럼 250 V 이하에



Fig. 4. PEO film thickness formed on AZ31 Mg alloy with film formation voltage at 200 mA/cm<sup>2</sup> of 300 Hz pulse current in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution.

서는 0.077 µm/V의 속도로 피막의 두께가 증가하 다가 250 V 이상에서는 약 2 µm/V로 약 26배 증 가하였다. 즉 250 V 이하에서 형성된 피막은 유 전체 파손이 쉽지 않은 반면, 250 V 이상에서는 PEO피막이 쉽게 유전체 파손이 쉽게 일어난다고 할 수 있다.

그림 1과 그림 2에서 보면 약 80초 후 250 V에 도달하고 동시에 매우 큰 아크들은 전 표면에서 발생되기 시작함을 알 수 있다. 이는 250 V 이상 에서 PEO피막이 형성될 경우 두꺼운 피막의 유전 체 파손을 일으켜야 하므로 매우 큰 아크들이 발 생함을 알려준다. 즉 250 V 이상에서 일어나는 PEO 피막의 유전체 파손은 매우 큰 아크의 발생 으로 국부적으로 매우 높은 열을 발생시킴으로써 더욱 쉽게 일어난다고 할 수 있다.

그림 5는 AZ31 마그네슘 합금에 펄스전류를 인 가했을 때 시간에 따른 PEO 피막의 표면구조를 보여주고 있다. 아크가 발생하기 시작한 직후 10 초 후 피막은 약 0.5 m 이하의 매우 미세한 기공 을 포함한 얇은 PEO 피막이 형성되어 있었으며 처리시간이 증가함에 따라 점차 기공의 크기가 커 지고 있음을 볼 수 있다. PEO 피막 내부에 형성된 기공의 크기는 발생된 아크의 크기에 비례하게 나 타난다 (그림 2 참조). 따라서 기공의 크기가 작은 PEO 피막을 형성시키기 위해서는 발생하는 아크 의 크기를 작게 만드는 기술이 필요하다. 일반적 으로 주파수가 높은 교류 전류 또는 아노딕/캐소 딕 펄스를 주기적으로 인가함으로써 아크의 크기 를 미세하게 만들 수 있다. 또한 용액의 조성을 달 리하여 아크의 크기를 조절할 수 있다. 인가된 펄 스 전류 파형의 종류 및 용액의 조성에 따른 아크 의 크기 변화 및 PEO피막의 구조변화에 대한 연 구는 지속적으로 연구될 필요성이 있다.

한편 미세한 아크의 발생은 일반적으로 피막의 성장속도가 느린 단점을 가진다. 반면에 큰 아크 의 발생은 기공의 크기가 큰 반면 빠른 피막의 성 장속도를 나타낸다. 미세한 기공을 가진 PEO 피 막을 저렴하게 얻을 수 있는 공정을 개발하기 위 해서는 피막의 성장속도를 높이면서 동시에 피막 내부 기공의 크기를 줄일 수 있는 기술의 개발이 필요하다. 한 가지 예로 아노다이징 피막이나 다 공성의 PEO피막을 먼저 형성시킨 후 미세한 기공 을 만들 수 있는 조건에서 PEO처리를 하는 방식 을 들 수 있다. 이처럼 저렴하면서 우수한 물성을 나타내는 PEO공정기술에 대한 연구가 지속적으



Fig. 5. SEM micrographs of the AZ31 Mg alloy surface with PEO treatment time at 200 mA/cm<sup>2</sup> of 300 Hz pulse current in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution.



Fig. 6. Surface and cross-sectional morphologies of PEO films formed on AZ31 Mg alloy with time at 200 mA/cm<sup>2</sup> of 300 Hz pulse current in 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF solution.

으로 이루어져야 할 것이다.

250 V 이상에서 PEO 피막의 유전체 파손이 더 쉽게 일어나는 원인을 이해하기 위해서는 형성된 PEO피막의 구조를 정밀하게 관찰하였으며, 그 결 과를 그림 6에 나타내었다. 피막형성전압이 250 V에 도달하기 전인 70초와 도달 후인 90초 처리 한 PEO피막의 구조를 비교해 보면 (그림 6), 그 림 6(b)의 표면사진에서 노란색 점선의 원으로 표 시한 것처럼 약 10 때 내외의 크기를 가진 노듈들 이 형성되기 시작했다는 것을 알 수 있다. 또한 그 림 6에서 표면사진 아래 부분에 도시한 PEO피막 의 단면사진을 관찰해 보면 적색의 점선으로 표시 된 원 안에서 보는 것처럼 커다란 기공들이 형성 되어 있음을 볼 수 있다. 즉 250 V 이상에서 250 V 이하에서보다 PEO 피막의 유전체 파손이 더 쉽 게 일어나는 것은 피막 내 기공 결함들이 크기가 커져서 유전체 파손저항이 낮아졌기 때문이라 할 수 있다.

### 4. 결 론

본 연구에서는 0.05 M NaOH + 0.05 M Na<sub>2</sub>SiO<sub>3</sub> + 0.1 M NaF 용액에서 AZ31 마그네슘 합금에 300 Hz, 200 mA/cm<sup>2</sup>의 펄스전류를 인가하여 플라즈 마전해산화 피막을 형성시키고, 시간에 따른 피막 형성 전압, 아크의 발생 양상, 피막의 두께 및 미세 구조를 관찰하여 PEO 피막의 형성거동에 대하여 연구하였다. 실험 결과 PEO피막은 펄스 전류 인가 후 약 10초 후부터 아크의 발생과 함께 성장하기 시 작하였으며, 피막 형성전압은 전류인가 초기 10초

초기 10초 까지는 4 V/s의 매우 빠른 속도로 증가 후 약 10 초 이후 아크의 발생과 함께 전압의 증가 속도가 약 1.4 V/s으로 느려지고 약 80 초 후에는 다시 0.2 V/s로 더 느려지는 현상이 관찰되었다. PEO 처리 시간에 따라 피막 형성전압이 감소하는 현상은 높은 전압 하에서 피막의 유전체 파손이 더 욱 쉽게 일어나기 때문으로 사료된다. PEO 피막의 성장속도는 피막 형성전압과 관계없이 정전류 모 드에서 약 5.58 m/min로 일정하게 나타났다. 피 막의 두께와 인가전압의 관계를 살펴본 결과 250 V 이하 및 이상에서 각각0.077 m/V 및 2 m/V로 나타났다. 250 V 이상의 전압에서 AZ31 Mg 합금 표면에 형성된 PEO피막의 유전체 파손이 쉽게 일 어하는 현상은 피막 내 기공 결함들이 크기가 커져 서 유전체 파손저항이 낮아졌기 때문으로 여겨진 다.

# 감사의 글

This research was financially supported by a research grant of KIMS.

### REFERENCE

- N. V. Phuong, M. Gupta, S. Moon, Corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium, Trans. Nonferrous Met. Soc. China, 27 (2017) 1087-1095.
- [2] B. R. Fazal, S. Moon, Formation of cerium conversion coatings on AZ31 magnesium alloy, J. Kor. Inst. Surf. Eng., 49 (2016) 1-13.
- [3] B. R. Fazal, S. Moon, Effect of fluoride conversion coating on the corrosion resistance and adhesion of E-painted AZ31 magnesium alloy, J. Kor. Inst. Surf. Eng., 49 (2016) 395-400.
- [4] D. Kwon, P. K. Song, S. Moon, Formation behavior and properties of PEO Films on AZ91 Mg alloy in 0.1 M NaOH + 0.05 M NaF solution containing various Na<sub>2</sub>SiO<sub>3</sub>, J. Kor. Inst. Surf. Eng., 53 (2020) 59-66.
- [5] S. L. Aktuğ, S. Durdu, I. Kutbay, M. Usta, Effect of Na<sub>2</sub>SiO<sub>3</sub>·5H<sub>2</sub>O concentration on microstructure and mechanical properties

of plasma electrolytic oxide coatings on AZ31 Mg alloy produced by twin roll casting, Ceram. Int., 42 (2016) 1246.

- [6] S. Moon, C. Yang, S. Na, Effects of hydroxide and silicate ions on the plasma electrolytic oxidation of AZ31 Mg Alloy, J. Kor. Inst. Surf. Eng., 47 (2014) 147-154.
- [7] H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochim., 52 (2007) 3785-3793.
- [8] S. Moon, Y. Kim, C. Yang, Effect of NaOH concentration on the PEO film formation of AZ31 magnesium alloy in the electrolyte containing carbonate and silicate Ions, J. Surf. Sci. Eng., 50 (2017) 308-314.
- [9] S. Moon, D. Kwon, Anodic oxidation behavior of AZ31 Mg alloy in aqueous solutions containing various NaF concentrations, J. Kor. Inst. Surf. Eng., 55 (2022) 196-201.
- [10] S. Moon, D. Kwon, Anodic oxide films formed on AZ3 magnesium alloy by plasma electrolytic oxidation method in electrolytes containing various NaF concentrations, J. Kor. Inst. Surf. Eng., 49 (2016) 225-230.
- [11] S. Stojadinović, R. Vasilić, Jelena R. P., M. Perić, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surf. Coat. Technol., 273 (2015) 1-11.
- [12] B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, Appl. Surf. Sci., 287 (2013) 461-466.
- [13] J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, T. Xu, Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy, Appl. Surf. Sci., 252 (2005) 345-351.
- [14] S. Moon, Y. Kim, Anodic oxidation behavior

of AZ31 magnesium alloy in aqueous electrolyte containing various Na<sub>2</sub>CO<sub>3</sub> concentrations, J. Kor. Inst. Surf. Eng., 49 (2016) 331-338.

- [15] S. Moon, J. Kim, Effect of Na<sub>3</sub>PO<sub>4</sub> concentration on the formation behavior of PEO films on AZ31 Mg alloy, J. Kor. Inst. Surf. Eng., 52 (2019) 265-274.
- [16] S. Yagi, A. Sengoku, K. Kubota, E. Matsubara, Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte, Corros. Sci., 57 (2012) 74-80.
- [17] J. Liang, P. B. Srinivasan, C. Blawert, M,

Störmer, W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes, Electrochim. Acta, 54 (2009) 3842-3850.

- [18] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G. E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, Corros. Sci., 50 (2008) 1744-1752.
- [19] S. Moon, A blade-abrading method for surface pretreatment of Mg alloys, J. Kor. Inst. Surf. Eng. 48 (2015) 194-198.