• Title/Summary/Keyword: Arbitrary shape

Search Result 345, Processing Time 0.023 seconds

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Complete 3D Surface Reconstruction from an Unstructured Point Cloud of Arbitrary Shape by Using a Bounding Voxel Model (경계 복셀 모델을 이용한 임의 형상의 비조직화된 점군으로부터의 3 차원 완전 형상 복원)

  • Li Rixie;Kim Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.906-915
    • /
    • 2006
  • This study concerns an advanced 3D surface reconstruction method that the vertices of surface model can be completely matched to the unstructured point cloud measured from arbitrary complex shapes. The concept of bounding voxel model is introduced to generate the mesh model well-representing the geometrical and topological characteristics of point cloud. In the reconstruction processes, the application of various methodologies such as shrink-wrapping, mesh simplification, local subdivision surface fitting, insertion of is isolated points, mesh optimization and so on, are required. Especially, the effectiveness, rapidity and reliability of the proposed surface reconstruction method are demonstrated by the simulation results for the geometrically and topologically complex shapes like dragon and human mouth.

Calculation of Impact Forces of an Arbitrary Force Applied Vibro-Impact system (임의 하중이 작용하는 진동-충격시스템에서의 충격력계산)

  • 이창희
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.679-685
    • /
    • 2000
  • A procedure is presented for calculating the magnitude and shape of impact pulses in a vibro-impact system when an arbitrary input force is applied to a point in the system. The procedure utilizes the condition that the displacements of two contacting point in the primary and secondary system are the same during a contacting period. The displacements of those points are calculated numerically through the convolution integral which involve the impulse response functions and applied forces. The validity of the calculation procedure is demonstrated by using it to calculated the impact forces of a simple system where a theoretical solution is known and also of systems for which other researchers have published results. The agreement between the results derived by the numerical method and the theoretical and also some published results is good.

  • PDF

Computation of Water and Air Flow with Submerged Hydrofoil by Interface Capturing Method

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.789-795
    • /
    • 2000
  • Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are simulated numerically, considering two-fluid flows of both water and air. The computation is performed by a finite volume method using unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell wise local mesh refinement. The integration in space is of second order, based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels. The linear equations are solved by conjugate gradient type solvers, and the non-linearity of equations is accounted for through Picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations, the continuity equation, the conservation equation of one species, and the equations for two turbulence quantities. Finally, a comparison is quantitatively made at the same speed between the computation and experiment in which the grid sensitivity is numerically checked.

  • PDF

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.

Free Vibration Analysis of Clamped-Free Circular Cylindrical Shells with Plate Attached at Arbitrary Axial Positions (원판이 결합된 외팔 원통셀의 고유진동 특성해석)

  • 임정식;이영신;손동성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.237-242
    • /
    • 1996
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial positions was derived and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of plate and shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS as well as modal test in order to validate the formulation. The effects of the thickness and location of the plate were evaluated.

  • PDF

Forced Vibration Analysis of Multi-Layered Damped Sandwich Beam (샌드위치형 다층 감쇠보의 강제진동 응답 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.608-611
    • /
    • 2005
  • In this paper the general equation of motion of damped sandwich beam including arbitrary viscoelastic material layer was derived based on the equation presented by Mead and Markus. The equation of motion of n-layered sandwich beam was represented by (n+3)th order ordinary differential equation. It was verified that the general equation of motion derived in this paper could represent the equations of motions for single-layered, three-layered, five-layered and multi-layered damped beam. Finite element method for the arbitrary-layered damped beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

  • PDF

Development of Thermal Imprint System for Net-Shape Manufacturing of Multi-layer Ceramic Structure (세라믹 정형 가공을 위한 성형기 개발)

  • Park, C.K.;Rhim, S.H.;Hong, J.P.;Lee, J.K.;Yoon, S.M.;Ko, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.401-404
    • /
    • 2008
  • In the present investigation, a high precision thermal imprint system for micro ceramic products was developed and the net-shape manufacturing of multi-layer ceramic reflector for LED (Light Emitting Diode) was conducted with a precision metal die. Workpiece used in the present investigation were the multi-layer laminated ceramic sheets with pre-punched holes. The cavity with arbitrary angle was formed on the circular and rectangular holes of the ceramic sheets. During the imprinting process, the ambient temperature of the imprint system was kept over the transition temperature of the ceramic sheet and then rapidly cooled. The results in this paper show that the present method can be successfully applied to the fabrication of very small size hole array for ceramic reflector in a one step operation.

  • PDF

Ion Beam Induced Micro/Nano Fabrication: Shape Fabrication (이온빔을 이용한 마이크로/나노 가공: 형상가공)

  • Kim, Heung-Bae;Hobler, Gerhard
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.109-116
    • /
    • 2007
  • Focused ion beams are a potential tool for micro/nano structure fabrication while several problems still have to be overcome. Redeposition of sputtered atoms limits the accurate fabrication of micro/nano structures. The challenge lies in accurately controlling the focused ion beam to fabricate various arbitrary curved shapes. In this paper a basic approach for the focused ion beam induced direct fabricate of fundamental features is presented. This approach is based on the topography simulation which naturally considers the redeposition of sputtered atoms and sputtered yield changes. Fundamental features such as trapezoidal, circular and triangular were fabricated with this approach using single or multiple pass box milling. The beam diameter(FWHM) and maximum current density are 68 nm and $0.8 A/cm^2$, respectively. The experimental investigations show that the fabricated shape is well suited for the pre-designed fundamental features. The characteristics of ion beam induced direct fabrication and shape formation will be discussed.

Bearing Lobe Profile and Cutting Force Modeling (베어링의 로브형상과 절삭력 모델링)

  • 윤문철;조현덕;김성근
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.343-349
    • /
    • 1998
  • A modeling of machined geometry and cutting force was proposed for the case of round shape machining, and the effects of internally machined profile are analyzed and its realiability was verified by the experiments of roundness tester, especially in boring operation in lathe. Also, harmonic cutting force model was proposed with the parameter of specific cutting force, chip width and chip thickness, and in this study, we can see that bored workpiece profile was also mapped into cutting force signal with this model. In general, we can calculated the theoretical lobe profile with arbitrary multilobe. But in real experiments, the most frequently measured numbers are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applied to round shape machining such as drilling, boring, ball screw and internal grinding operation with the same method.

  • PDF