• Title/Summary/Keyword: Arbitrary shape

Search Result 345, Processing Time 0.034 seconds

Free Vibration of Arbitrary Shaped Arches (임의선형을 갖는 아치의 자유진동)

  • Lee, Tae-Eun;Shin, Seong-Cheol;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.526-529
    • /
    • 2004
  • Arches are one of the most important basic structural units as well as the beams, columns and plates. Most complicated structures consist of only these basic units and therefore it is very attractive research subject to analysis both the static and dynamic behavior of such units including the arches. This study deals with the free vibration of arbitrary shaped arches. In order to obtain the exactly arch shape, which surveyed (x, y) of neutral axis of arbitrary shaped arches are compared to various shape of arch: circular, parabolic, sinusoidal, elliptic, spiral and cartenary. The differential equations governing free vibrations of arches are merely adopted in the open literature rather than deriving the equations in this study. The Taylor series method is used as the numerical differential scheme. The Runge-Kutta method and the Regula-Falsi method, respectively, are used to integrate the governing differential equations and to compute the natural frequencies It is expected that results obtained herein can be practically utilized in the fields of vibration control.

  • PDF

A method to determine moment of inertia properties of an arbitrary shape body by modal testing (모우드 측정을 이용한 관성 모우멘트 도출)

  • 박윤식;정경렬;홍성욱;전혁수;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.102-107
    • /
    • 1986
  • This paper presents a new idea to obtain moment of inertia values of an arbitrary shape body by applying inverse modal transformation technique. A multiaxes inertia pendulum apparatus was designed to measure 6 rigid body modes of a test body. A software was developed to calculate inertia properties as well as the location of center of gravity and total mass of the test body from the measured modal data. The developed method was applied to a simple body of which the inertia properties are known then the obtained values were compared with the known values.

  • PDF

New Formulation of MNDIF Method for Eigenvalue Analysis of Plates (평판의 고정밀도 고유치 해석을 위한 새로운 MNDIF법 정식 개발)

  • Kang, Sang Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.180-185
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate natural frequencies of concave plates with arbitrary shape. Originally, the MNDIF method cannot yield accurate natural frequencies for concave plates. To overcome this weak point, a new approach of dividing a concave plate into two convex domains is proposed and the validity and accuracy is shown in a verification example.

  • PDF

Reverse Engineering of Apherical Lens Curvature (역공학을 이용한 비구면 렌즈의 설계 데이터 도출)

  • 김한섭;김명중;박규열;전종업;김의중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.806-809
    • /
    • 2003
  • In this paper, extracting design information from arbitrary aspherical lens shape in reverse engineering is introduced. Deformation terms and sphere data equation with various variables compose asphere equation. Aspherical lens shape is expressed with complicated polynomial expression that includes deformation terms and sphere data. Deformation term and vertex curvature have direct influence on a geometric shape and an optical characteristics of aspherical lens. Hence, extracting these information mean that design information could be derived and analyzed from shape data of arbitrary aspherical lens. Furthermore, sharing designer's experience and knowledge for aspherical lens design could be expected.

  • PDF

A Synthetic Method for Generating Texture Patterns Similar to a Selected Original Texture Image

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.5-35
    • /
    • 2001
  • The purpose of the study is to develop a synthetic method for generating arbitrary number of not the same but similar texture images. The method includes processes to extract basic shape elements from texture images originating in actual objects, to select them to reappear the image features and to arrange them in a image plane. The authors have already proposed the shape-pass type filter bank assuming that the sensual impression mainly depends on minute shapes existing in the texture images. By use of nine basic shape elements, namely black/white-roof, black/white-line, black/white-snake, black/white-pepper, and cliff, natural texture images originating in actual objects have been characterized by feature vectors in a nine dimensional space. To generate arbitrary number of similar texture images, minute shape pieces ...

  • PDF

Vibration Analysis of Rotating Cantilever Plates with Arbitrary Orientation Angle (임의의 자세를 갖는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1331-1337
    • /
    • 2003
  • Linearized equations of motion for the vibration analysis of rotating cantilever plates with arbitrary orientation angle are derived in the present work. Two in-plane stretch variables are introduced to be approximated. The use of the two in-plane stretch variables enables one to derive the equations of motion which include proper motion-induced stiffness variation terms. The equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating cantilever plates are investigated through numerical study. The natural frequency loci veering along with the associated mode shape variations, which occur while the rotating speed increases, are also presented and discussed.

New Technique of Spatial Printing of Materials for Arbitrary Shape Forming (임의의 형상 성형을 위한 새로운 공간 직접 성형 기술)

  • 이일한;정용재;김창경
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.107-114
    • /
    • 2000
  • In this study, we investigated the possibility of the application of the EzROBO system to direct shaping techniques which can make arbitrary shapes without any specific mold. We formed arbitrary shapes using raw materials of EH-260D (Epoxy+Binder) with the conditions of $250\mu\textrm{m}$ layer thickness, 0.2MPa working pressure, 20mm/sec working velocity, and 1.8mm needle thickness. The developed Spatial Printing Technique showed enhanced working velocity and lower cost than existing 3DP process, and is expected to replace the existing process through the process optimization in the future.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes (초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발)

  • 심현보;이상헌;손기찬
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.