• 제목/요약/키워드: Ara C

검색결과 120건 처리시간 0.027초

Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

  • Liu, Chun-Ying;Zhou, Rui-Xin;Sun, Chang-Kai;Jin, Ying-Hua;Yu, Hong-Shan;Zhang, Tian-Yang;Xu, Long-Quan;Jin, Feng-Xie
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.221-229
    • /
    • 2015
  • Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.

잔대종자 발아촉진에 관한 연구 (Studies on the Promoting of Seed Germination of Adenophora triphylla var. Japanica $H_{ARA}$)

  • 김시동
    • 한국자원식물학회지
    • /
    • 제9권2호
    • /
    • pp.171-175
    • /
    • 1996
  • 본 연구는 잔대 종자를 재료로 하여 생장조절제(生長調節劑), 저온처리(低溫處理) 기간(期間), 발아온도(發芽溫度) 등을 처리하여 발아율 향상 및 발아촉진(發芽促進) 방법을 구명(究明)코자 1995년 수행하였고 결과를 요약하면 다음과 같다. 1. 종자 발아율은 무처리 22%에 비하여 BA $10mg/\iota$에서 53%, $GA_3\;500mg/\iota$ 24시간 침지 처리 하였을 때 94%로 발아율이 양호하였으며 평균 발아일수는 5일로 무처리보다 1.5일 빨랐다. 2. $KNO_3\;1g/\iota$에서 54%의 발아율을 보였으나 KOH 처리 효과를 인정할 수 없었다. 3. 휴면타파를 위한 저온처리($1^{\circ}C$) 기간은 2주 이상에서 86% 이상의 발아율을 보였다. 4. 발아촉진을 위한 최적 온도조건은 $25^{\circ}C$였다.

  • PDF

Lack of Any Relationship Between Circulating Autoantibodies and Interleukin-6 Levels in Egyptian Patients Infected with the Hepatitis C Virus

  • Nasr, Mohamed Y;Deeb, Ammar S Ali;Badra, Gamal;Sayed, Ibrahim H El
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권11호
    • /
    • pp.4977-4982
    • /
    • 2016
  • Introduction: Elevated serum interleukin (IL) 6 has been reported in patients infected with the hepatitis C virus (HCV), but it remains debatable whether this influences the production of autoantibodies and the biochemical profile of HCV disease. Therefore, this current study was conducted to evaluate the relationship between IL-6 and circulating autoantibody levels in HCV positive patients. Methods: Levels of IL-6 in serum samples from 102 patients with HCV and 103 normal controls were determined by enzyme linked immunosorbent assay (ELISA). Autoantibodies were detected by immunofluorescence. Results: Levels of IL-6 were significantly higher (p=0.028) in patients infected with (HCV) compared with normal group. Autoantibodies were noted in in 43.1% of the patients; of these, 23.5% featured anti-nuclear antibodies (ANA+), 16.7% anti-smooth muscle antibodies (ASMA+), 7.8% anti-mitochondrial antibodies (AMA+), 17.6% anti-parietal cell antibodies (APCA+), 7.8% anti canalicular antibodies, and 2.9% anti reticulin antibodies (ARA+). No patients were found to be positive for anti-brush border antibodies (ABBA) or anti-ribosomal antibodies. (ARiA). No links with IL-6 levels were apparent. Conclusions: IL-6 levels are increased in patients infected with HCV disease and could influence the production of autoantibodies. However, this study did not provide evidence of a specific relationship between IL6 and circulating autoantibodies in such cases.

Salmonella Invasion Gene Regulation: A Story of Environmental Awareness

  • Jones Bradley D.
    • Journal of Microbiology
    • /
    • 제43권spc1호
    • /
    • pp.110-117
    • /
    • 2005
  • Salmonella enterica serovar Typhimurium causes human gastroenteritis and a systemic typhoid-like infection in mice. A critical virulence determinant of Salmonella is the ability to invade mammalian cells. The expression of genes required for invasion is tightly regulated by environmental conditions and a variety of regulatory genes. The hilA regulator encodes an OmpR/ToxR family transcriptional regulator that activates the expression of invasion genes in response to both environmental and genetic regulatory factors. Work from several laboratories has highlighted that regulation of hilA expression is a key point for controlling expression of the invasive phenotype. A number of positive regulators of hilA expression have been identified including csrAB, sirA/barA, pstS, hilC/sirC/sprA, fis, and hilD. HilD, an AraC/XylS type transcriptional regulator, is of particular importance as a mutation in hilD results in a 14-fold decrease in chromosomal hilA::Tn5lacZY-080 expression and a 53-fold decrease in invasion of HEp-2 cells. It is believed that HilD directly regulates hilA expression as it has been shown to bind to hilA promoter sequences. In addition, our research group, and others, have identified genes (hilE, hha, pag, and lon) that negatively affect hilA transcription. HilE appears to be an important Salmonella-specific regulator that plays a critical role in inactivating hilA expression. Recent work in our lab has been directed at understanding how environmental signals that affect hilA expression may be processed through a hilE pathway to modulate expression of hilA and the invasive phenotype. The current understanding of this complex regulatory system is reviewed.

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection

  • Kee Woong Kwon;Tae Gun Kang;Ara Lee;Seung Mo Jin;Yong Taik Lim;Sung Jae Shin;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.16.1-16.19
    • /
    • 2023
  • Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.

Effect of IL-4 on the Development and Function of Memory-like CD8 T Cells in the Peripheral Lymphoid Tissues

  • Hi-Jung Park;Ara Lee;Jae-Il Lee;Seong Hoe Park;Sang-Jun Ha;Kyeong Cheon Jung
    • IMMUNE NETWORK
    • /
    • 제16권2호
    • /
    • pp.126-133
    • /
    • 2016
  • Unlike conventional T cells, innate CD8 T cells develop a memory-like phenotype in the thymus and immediately respond upon antigen stimulation, similar to memory T cells. The development of innate CD8 T cells in the thymus is known to require IL-4, which upregulates Eomesodermin (Eomes). These features are similar to that of virtual memory CD8 T cells and IL-4-induced memory-like CD8 T cells generated in the peripheral tissues. However, the relationship between these cell types has not been clearly documented. In the present study, IL-4-induced memory-like CD8 T cells generated in the peripheral tissues were compared with innate CD8 T cells in terms of phenotype and function. When an IL-4/anti-IL-4 antibody complex (IL-4C) was injected into C57BL/6 mice daily for 7 days, the EomeshiCXCR3+ CD8 T cell population was markedly increased in the peripheral lymphoid organs and blood. These cells were generated from naïve CD8 T cells or accumulated via the expansion of pre-existing CD44hiCXCR3+ CD8 T cells. Initially, the majority of these CXCR3+ CD8 T cells expressed low levels of CD44, which was followed by the conversion to the CD44hi phenotype. This conversion was associated with the acquisition of enhanced effector function. After discontinuation of IL-4C treatment, Eomes expression levels gradually decreased in CXCR3+ CD8 T cells. Taken together, the results of this study demonstrate that IL-4-induced memory-like CD8 T cells generated in the peripheral lymphoid tissues are phenotypically and functionally similar to the innate CD8 T cells generated in the thymus.

Characterization of a Late Gene, ORF60 from Bombyx mori Nucleopolyhedrovirus

  • Du, Meng-Fang;Yin, Xin-Ming;Guo, Zhong-Jian;Zhu, Liang-Jun
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.737-742
    • /
    • 2006
  • Open reading frame 60 of Bombyx mori nucleopolyhedrovirus (Bm60) is located between 56,673 and 57,479 bp in the BmNPV genome which encodes 268 amino acid residues with predicted molecular weight of 31.0 kDa. Bm60 and its homologues have been identified in 11 completely sequenced lepidopteran NPVs. The transcript of Bm60 was detected by RT-PCR at 18-72 h post-infection (p.i.), while the corresponding protein could be detected at 24-72 h p.i. in BmNPV-infected BmN cells by Western blot analysis using a polyclonal antibody against Bm60. The expression of Bm60 was inhibited in the presence of Ara-c, an inhibitor of viral DNA synthesis. These results together indicated that Bm60 was a late gene. The size of Bm60 product was found to be a 31 kDa in BmNPV-infected BmN cells, consistent with predicted molecular weight. Immuno-fluoresence analysis showed that the Bm60 product was first detected in the cytoplasm at 24 h p.i and also located in nucleus during later infection. In conclusion, the available data suggest that Bm60 is a functional ORF of BmNPV and encodes a 31kDa protein expressed in the later stage of infection cycle.

DNA 회복합성저해제 및 철이 Bleomycin과 과산화수소에 의해 유발된 CHO 세포의 염색체 이상빈도에 미치는 영향 (Effect of DNA Repair Inhibitors and Iron on the Chromosome Aberration Induced by Bleomycin and Hydrogen Peroxide in CHO Cells)

  • 정해원;유은경
    • 한국환경보건학회지
    • /
    • 제19권4호
    • /
    • pp.59-66
    • /
    • 1993
  • The cellular toxicity and antitumor effects of bleomycin are thought to be occurred by formation of O$_2$-Fe$^{2+}$-bleomycin complexes that degrade DNA and release O$_2^-$ and $^{\cdot}$OH radicals. Hydroxyl radicals derived from hydrogen peroxide seem most likely to be involved in the various stages of carcinogenesis, and transition metals such as iron play a central role in activation of bleomycin and in formation of hydroxyl radicals. This study was performed to investigate whether treatment with ferrous sulfate increase chromosome aberration induced by bleomycin and hydrogen peroxide, and whether there is different repair mechanism for DNA damage induced by those chemicals. Treatment with 3AB, Ara C, during G$_1$ and post-treatment with caffeine, and Hu during G$_2$ increased the frequency of chromosome aberration induced by bleomycin but post-treatment with caffeine only did function that way when hydrogen peroxide was treated. When 6.6X 10$^{-7}$ M of bleomycin or 5.0X10$^{-5}$M of hydrogen peroxide were treated simultaneously with iron, the frequency of chromosome aberration was reduced, if compared with the results by bleomycin or hydrogen per oxide alone.

  • PDF

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.