DOI QR코드

DOI QR Code

Effect of IL-4 on the Development and Function of Memory-like CD8 T Cells in the Peripheral Lymphoid Tissues

  • Hi-Jung Park (Graduate Course of Translational medicine, Seoul National University College of Medicine) ;
  • Ara Lee (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Jae-Il Lee (Graduate Course of Translational medicine, Seoul National University College of Medicine) ;
  • Seong Hoe Park (Graduate Course of Translational medicine, Seoul National University College of Medicine) ;
  • Sang-Jun Ha (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Kyeong Cheon Jung (Graduate Course of Translational medicine, Seoul National University College of Medicine)
  • Received : 2016.01.15
  • Accepted : 2016.03.31
  • Published : 2016.04.30

Abstract

Unlike conventional T cells, innate CD8 T cells develop a memory-like phenotype in the thymus and immediately respond upon antigen stimulation, similar to memory T cells. The development of innate CD8 T cells in the thymus is known to require IL-4, which upregulates Eomesodermin (Eomes). These features are similar to that of virtual memory CD8 T cells and IL-4-induced memory-like CD8 T cells generated in the peripheral tissues. However, the relationship between these cell types has not been clearly documented. In the present study, IL-4-induced memory-like CD8 T cells generated in the peripheral tissues were compared with innate CD8 T cells in terms of phenotype and function. When an IL-4/anti-IL-4 antibody complex (IL-4C) was injected into C57BL/6 mice daily for 7 days, the EomeshiCXCR3+ CD8 T cell population was markedly increased in the peripheral lymphoid organs and blood. These cells were generated from naïve CD8 T cells or accumulated via the expansion of pre-existing CD44hiCXCR3+ CD8 T cells. Initially, the majority of these CXCR3+ CD8 T cells expressed low levels of CD44, which was followed by the conversion to the CD44hi phenotype. This conversion was associated with the acquisition of enhanced effector function. After discontinuation of IL-4C treatment, Eomes expression levels gradually decreased in CXCR3+ CD8 T cells. Taken together, the results of this study demonstrate that IL-4-induced memory-like CD8 T cells generated in the peripheral lymphoid tissues are phenotypically and functionally similar to the innate CD8 T cells generated in the thymus.

Keywords

Acknowledgement

This work was supported by a grant of the Korea health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0954).

References

  1. Berg, L. J. 2007. Signalling through TEC kinases regulates conventional versus innate CD8 T-cell development. Nat. Rev. Immunol. 7: 479-485.  https://doi.org/10.1038/nri2091
  2. Veillette, A., Z. Dong, and S. Latour. 2007. Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity 27: 698-710.  https://doi.org/10.1016/j.immuni.2007.11.005
  3. Lee, Y. J., S. C. Jameson, and K. A. Hogquist. 2011. Alternative memory in the CD8 T cell lineage. Trends Immunol. 32: 50-56.  https://doi.org/10.1016/j.it.2010.12.004
  4. Atherly, L. O., J. A. Lucas, M. Felices, C. C. Yin, S. L. Reiner, and L. J. Berg. 2006. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8 T cells. Immunity 25: 79-91.  https://doi.org/10.1016/j.immuni.2006.05.012
  5. Broussard, C., C. Fleischacker, R. Horai, M. Chetana, A. M. Venegas, L. L. Sharp, S. M. Hedrick, B. J. Fowlkes, and P. L. Schwartzberg. 2006. Altered development of CD8 T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 25: 93-104.  https://doi.org/10.1016/j.immuni.2006.05.011
  6. Weinreich, M. A., O. A. Odumade, S. C. Jameson, and K. A. Hogquist. 2010. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8 T cells. Nat. Immunol. 11: 709-716.  https://doi.org/10.1038/ni.1898
  7. Lee, A., S. P. Park, C. H. Park, B. H. Kang, S. H. Park, S. J. Ha, and K. C. Jung. 2015. IL-4 induced innate CD8 T cells control persistent viral infection. PLoS Pathog. 11: e1005193. 
  8. Choi, E. Y., K. C. Jung, H. J. Park, D. H. Chung, J. S. Song, S. D. Yang, E. Simpson, and S. P. Park 2005. Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23: 387-396.  https://doi.org/10.1016/j.immuni.2005.09.005
  9. Min H. S., Y. J. Lee, Y. K. Jeon, E. J. Kim, B. H. Kang, K. C. Jung, C. H. Chang, and S. H. Park. 2011. MHC class II-restricted interaction between thymocytes plays an essential role in the production of innate CD8 T cells. J. Immunol. 186: 5749-5757.  https://doi.org/10.4049/jimmunol.1002825
  10. Haluszczak, C., A. D. Akue, S. E. Hamilton, L. D. Johnson, L. Pujanauski, L. Teodorovic, S. C. Jameson, and R. M. Kedl. 2009. The antigen-specific CD8 T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206: 435-448.  https://doi.org/10.1084/jem.20081829
  11. Akue, A. D., J. Y. Lee, and S. C. Jameson. 2012. Derivation and maintenance of virtual memory CD8 T cells. J. Immunol. 188: 2516-2523.  https://doi.org/10.4049/jimmunol.1102213
  12. Lee, J. Y., S. E. Hamilton, A. D. Akue, K. A. Hogquist, and S. C. Jameson. 2013. Virtual memory CD8 T cells display unique functional properties. Proc. Natl. Acad. Sci. U. S. A. 110: 13498-13503.  https://doi.org/10.1073/pnas.1307572110
  13. Ventre, E., L. Brinza, S. Schicklin, J. Mafille, C. A. Coupet, A. Marcais, S. Djebali, V. Jubin, T. Walzer, and J. Marvel. 2012. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells. J. Immunol. 189: 3480-3489.  https://doi.org/10.4049/jimmunol.1102954
  14. Morris, S. C., S. M. Heidorn, D. R. Herbert, C. Perkins, D. A. Hildeman, M. V. Khodoun, and F. D. Finkelman. 2009. Endogenously produced IL-4 nonredundantly stimulates CD8 T cell proliferation. J. Immunol. 182: 1429-1438.  https://doi.org/10.4049/jimmunol.182.3.1429
  15. Kurzweil, V., A. LaRoche, and P. M. Oliver. 2014. Increased peripheral IL-4 leads to an expanded virtual memory CD8 population. J. Immunol. 192: 5643-5651.  https://doi.org/10.4049/jimmunol.1301755
  16. Kopf, M., G. Legros, M. Bachmann, M. C. Lamers, H. Bluethmann, and G. Kohler. 1993. Disruption of the murine Il-4 gene blocks Th2 cytokine tesponses. Nature 362: 245-248.  https://doi.org/10.1038/362245a0
  17. Ouyang, W., S. H. Ranganath, K. Weindel, D. Bhattacharya, T. L. Murphy, W. C. Sha, and K. M. Murphy. 1998. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9: 745-755.  https://doi.org/10.1016/S1074-7613(00)80671-8
  18. Carty, S. A., G. A. Koretzky, and M. S. Jordan. 2014. Interleukin-4 regulates eomesodermin in CD8 T cell development and differentiation. Plos One 9: e106659. 
  19. Oghumu, S., C. A. Terrazas, S. Varikuti, J. Kimble, S. Vadia, L. Yu, S. Seveau, and A. R. Satoskar. 2015. CXCR3 expression defines a novel subset of innate CD8 T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. FASEB J. 29: 1019-1028. https://doi.org/10.1096/fj.14-264507