• Title/Summary/Keyword: Ar-$H_2$

Search Result 960, Processing Time 0.029 seconds

The properties of Al-doped ZnO films deposited with RF magnetron sputtering system in various H2/(Ar + H2) gas ratios (RF 마그네트론 스퍼터링 방법을 사용해 증착된 Al이 도핑 된 ZnO 박막의 H2/(Ar + H2) 가스 비율에 따른 특성)

  • Kim, Jwa-Yeon;Han, Jung-Su
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.122-126
    • /
    • 2012
  • The properties of Al-doped ZnO (AZO) films were investigated as a function of $H_2/(Ar+H_2)$ gas ratio using an AZO (2 wt% $Al_2O_3$) ceramic target in a radio frequency (RF) magnetron sputtering system. The deposition process was done at $200^{\circ}C$ and in $2{\times}10^{-2}$ Torr working pressure and with various ratios of $H_2/(Ar+H_2)$ gas. During the AZO film deposition process, partial $H_2$ gas affected the AZO film characteristics. The electron resistivity (${\sim}9.21{\times}10^{-4}\;{\Omega}cm$) was lowest and mobility (${\sim}17.8\;cm^2/Vs$) was highest in AZO films when the $H_2/(Ar+H_2)$ gas ratio was 2.5 %. When the $H_2/(Ar+H_2)$ gas ratio was increased above 2.5 %, the electron resistivity increased and mobility decreased with increasing $H_2/(Ar+H_2)$ gas ratio in AZO films. The carrier concentration increased with increasing $H_2/(Ar+H_2)$ gas ratio from 0 % to 7.5 %. This phenomenon was explained by reaction of hydrogen and oxygen and additional formation of oxygen vacancy. The average optical transmission in the visible light wavelength region over 90 % and an orientation of the deposition was [002] orientation for AZO films grown with all $H_2/(Ar+H_2)$ gas ratios.

The characteristics of Al-doped ZnO films deposited with RF magnetron sputtering system in various H2/(Ar+H2) gas ratios

  • Kim, Jwayeon;Han, Jungsu;Park, Kyeongsoon
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.407-410
    • /
    • 2012
  • The properties of Al-doped ZnO (AZO) films were investigated as a function of H2/(Ar + H2) gas ratio using an AZO (2 wt% Al2O3) ceramic target in a radio frequency (RF) magnetron sputtering system. The deposition process was done at 200 ℃ and in 2 × 10-2Torr working pressure and with various ratios of H2/(Ar + H2) gas. During the AZO film deposition process, partial H2 gas affected the AZO film characteristics. The electron resistivity (~ 9.21 × 10-4 Ωcm) was lowest and mobility (~17.8 ㎠/Vs) was highest in AZO films when the H2/(Ar + H2) gas ratio was 2.5%. When the H2/(Ar + H2) gas ratio was increased above 2.5%, the electron resistivity increased and mobility decreased with increasing H2/(Ar + H2) gas ratio in AZO films. The carrier concentration increased with increasing H2/(Ar + H2) gas ratio from 0% to 7.5%. This phenomenon was explained by reaction of hydrogen and oxygen and additional formation of oxygen vacancy. The average optical transmission in the visible light wavelength region over 90% and an orientation of the deposition was [002] orientation for AZO films grown with all H2/(Ar + H2) gas ratios.

A Study on the Carbothermic Reduction of Nb-Oxide and the refining by Ar/Ar-$H_2$ plasma and Hydrogen solubility of Nb metal (Ar/Ar-$H_2$ 플라즈마에 의한 Nb금속제조와 Nb금속의 수소용해)

  • Jeong, Yong-Seok;Hong, Jin-Seok;Kim, Mun-Cheol;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.565-574
    • /
    • 1993
  • The Ar/Ar- $H_{2}$ plasma method Lvas applied to reduce and refine high purity Nb metal. Inaddition, the reaction between molten Nb metal and hydrogen were also analyzed in the Ar-(20%)$H_{2}$plasma. The metallic Nb of 99.5wt% was obtained at the ratio of $C/Nb_{2}O_{5}$=5.00 in the Ar plasma reductionand the $O_2$ loss from the thermal decomposition of niobium oxides did not take place. In the Ar-(20%)Hi plasma the metallic Nb of 99.8wt% was produced at the ratio of $C/Nb_{2}O_{5}$=4.80. It was observedthat a major reaction of the deoxidation was the reaction with H, Hi, and a deoxidation by the evaporationof $NbO_x$ did not occur but a mass loss of Nb did by a "splash" effect. The deoxidation reaction rateobeyed the 1st order reaction kinetics and the reaction rate constant(k') of deoxidation was $7.8 \times 10_{-7}$(m/sec).The solubility of hydrogen in Nb metal was 60ppm and it was larger than the solubility of molecularstate hydrogen by 40ppm in the Ar-(20%)$H_{2}$ plasma method. A saturation was within 60sec anda hydrogen content was reduced below lOppm by a Ar plasma re-treatment.by a Ar plasma re-treatment.

  • PDF

A Study on the Carbothermic Reduction and Refining of V, Ta and B Oxides by Ar/Ar-H2 Plasma (Ar/Ar-H2 플라즈마에 의한 V, Ta, B 산화물의 탄소용융환원 및 정련)

  • Chung, Yong-Sug;Park, Byung-Sam;Hong, Jin-Seok;Bae, Jung-Chan;Kim, Moon-Chul;Baik, Hong-Koo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.81-92
    • /
    • 1996
  • The Ar/Ar-$H_2$ plasma method was applied to reduce oxides and refine metals of V, Ta and B. In addition, the high temperature chemical reaction in Ar plasma and of the refining reaction in the Ar-(20%)$H_2$ plasma were analyzed. The crude V of 96wt% purity was obtained at the ratio of $C/V_{2}O_{5}=4.50$ by the Ar plasma reduction grade and the maximum reduction was obtained at $C/V_{2}O_{5}=4.50$ due to the $O_{2}$ loss from the thermal decomposition of vanadium oxide. In the Ar-(20%)$H_2$ plasma refining, the metallic V of 99.2wt% was produced at the ratio of $C/V_{2}O_{5}=4.40$. It was considered that a main refining reaction resulted from the chemical reaction between the residual carbon and residual oxygen. The metallic Ta of 99.8wt% was obtained at the ratio of $C/Ta_{2}O_{5}=5.10$ in a Ar plasma reduction and the Oz loss from the thermal decomposition of tantalum pentoxide did not take place. The deoxidation reaction was more significant than the decarburization reaction in the Ar-(20%)$H_2$ plasma refining and the metallic Ta of 99.9wt% was produced within the range of $C/Ta_{2}O_{5}$ ratio of 4.50 to 5.10. The Vickers hardness of Ta in the above mentioned range was about 220Hv due to the decrease in a residual oxygen by the deoxidation reaction. On the other hand, C is no suitable agent for the reduction of $B_{2}O_{3}$ by the Ar and Ar-$H_2$ plasma. But Fe-B-Si alloy was produced with the reduction of $B_{2}O_{3}$ in the melt when Fe, C, $B_{2}O_{3}$, and ferroboron mixtures were melted by the high frequency induction melting.

  • PDF

Structural,Magnetic, and Magnetoresistance Behavior of Magnetron Sputtered NiFe/Ag Multilayers under an Ar and $Ar/H_2$ Atmosphere (Ar 및 $Ar/H_2$ 분위기에서 스퍼터 증착한 NiFe/Ag 다층박막의 구조, 자기 및 자기저항 거동에 관한 연구)

  • 서유석;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.159-165
    • /
    • 1999
  • Structural, magnetic and magnetoresistance behavior of NiFe/Ag multilayers prepared by a magnetron sputter under an Ar and $Ar/H_2$ atmosphere was studied. It was difficult to make a uniform multilayer by using an Ar atmosphere. However, the uniform multilayers could be fabricated by using an $Ar/H_2$ atmosphere. This was thought to be due to decrease in the energy of the sputtered atom and Ar content of the film. Typical magnetoresistance behavior of the discontinuous NiFe/Ag multilayers appeared when the uniform multilayer was formed and annealed. Substrate temperature did not improve the uniformity of the multilayers. Above 20$0^{\circ}C$ of the substrate temperature, the films were almost formed into granular alloys rather than multilayers.

  • PDF

Refining of Invar and Permalloy Fe-Ni Alloys by $Ar/Ar-H_2$ Plasma and Electron Beam Melting (Ar/Ar-$H_2$ 플라즈마 및 전자선 용해에 의한 인바 및 퍼멀로이 Fe-Ni 합금의 정련)

  • Park, Byung-Sam;Baik, Hong-Koo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.175-183
    • /
    • 1995
  • It is difficult to remove such interstitial impurities as sulfur, oxygen, hydrogen and carbon in Fe-Ni alloys. Thermodynamic and kinetic studies were carried out on the behavior of hydrogen gas, oxygen gas, Si, Al and slag, and the reaction time by the $Ar/Ar-H_2$ plasma and electron beam melting. After the addition of Al, Si, they were melted by Ar plasma with reaction time changed. 80%Ni-Fe alloys showed a better deoxidation than 36%Ni-Fe alloys. At $Ar-H_2$ plasma melting, the deoxidation was significant. In the case of the electron beam melting, the residual oxygen was higher than in Ar plasma melting because electron beam melting temperature was lower than that of Ar plasma. For the decaburization, it was melted by $Ar-O_2$ plasma melting, which could remove effectively carbon by activated oxygen in plasma. We added slag to Fe-Ni alloys for the desulfurization. As the result of this experiments, the amount of residual sulfur was not changed according to the slag ratio and reaction time.

  • PDF

Process Diagnosis of Reactive Deposition of MgO by ICP Sputtering System (유도결합 플라즈마 스퍼터링 장치에서 MgO의 반응성 증착 시 공정 진단)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.206-211
    • /
    • 2012
  • Process analysis was carried out during deposition of MgO by inductively coupled plasma assisted reactive magnetron sputtering in Ar and $O_2$ ambient. At the initiation of Mg sputtering with bipolar pulsed dc power in Ar ambient, total pressure showed sharp increase and then slow fall. To analyse partial pressure change, QMS was used in downstream region, where the total pressure was maintained as low as $10^{-5}$ Torr during plasma processing, good for ion source and quadrupole operation. At base pressure, the major impurity was $H_2O$ and the second major impurity was $CO/N_2$ about 10%. During sputtering of Mg in Ar, $H_2$ soared up to 10.7% of Ar and remained as the major impurity during all the later process time. When $O_2$ was mixed with Ar, the partial pressure of Ar decreased in proportion to $O_2$ flow rate and that of $H_2$ dropped down to 2%. It was understood as Mg target surface was oxidized to stop $H_2$ emission by Ar ion sputtering. With ICP turned on, the major impurity $H_2$ was converted into $H_2O$ consuming $O_2$ and C was also oxidized to evolve CO and $CO_2$.

ECR plasma pretreatment for Ru nucleation enhancement on the TiN film (Ru 핵생성에 대한 ECR plasma 전처리 세정의 효과)

  • 엄태종;신경철;최균석;이종무
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.120-120
    • /
    • 2003
  • MOCVD법으로 TiN 표면에 Ru을 증착함에 있어서 Ru의 핵생성을 고양시키기 위한 ECR plasma 전처리 세정이 필요하다. 본 연구에서는 Ru 증착시 ECR $H_2O$$_2$, AE Plasma 전처리 세정 효과를 SEM, AES, XRD로 분석하였다. Ru의 핵생성은 ECR H$_2$, Ar Plasma의 노출시간이 증가할수록 향상된 반면, ECR $O_2$ plasma의 경우 노출시간이 증가할수록 핵생성 효과는 감소하였다. H$_2$ plasma 내의 H$_2$ion은 Ti와 NH$_3$를 형성하기 위해서 TiN과 반응하여 TiN을 Ti로 개질 시켰으며, Ar plasma 전처리 세정하는 동안 Ar plasma 내의 Ar ion은 TiN 또는 TiON 표면의 질소와 산소원자를 제거하는 효과를 나타내었다. 그 결과 TiN 표면상에서도 Ru의 핵생성이 쉽게 이루어졌으며 H$_2$, Ar ECR Plasma 전처리 세정에서 RU 핵생성이 향상되는 결과를 얻었다. 세 종류의 plasma중에서 Ar ECR plasma로 전처리 세정한 경우에 가장 높은 Ru 핵생성 밀도를 얻을 수 있었다.

  • PDF

Characteristics of ZnO:Al Thin Films for TCO Prepared by RE Magnetron Sputtering in $H_2/Ar$ Atmosphere ($H_2/Ar$분위기에서 제조한 투명전극용 ZnO:Al 박막의 특성)

  • Tark, Sung-Ju;Lee, Jeong-Seop;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.162-165
    • /
    • 2006
  • AZO (ZnO:Al) were fabricated by RF magnetron sputtering In $H_2/Ar(5%\;H_2)$ atmosphere, and structural, electrical and optical properties were investigated. The substrate temperatures were varied at RT, $100^{\circ}C,\;150^{\circ}C$ and$200^{\circ}C$. The resistivity of the films grown in $H_2/Ar(5%\;H_2)$ were reduced from $7.67{\times}10^{-4}{\Omega}\;cm$ to $5.95{\times}10^{-4}{\Omega}\;cm$ comparing that Ar (100%) and the transmittance of the ZnO:Al films in the visible range was 85%.

  • PDF

Nickel Complexes Having (N-C-N) Tridentate Ligands ((N-C-N) 세자리 리간드를 가지는 니켈 착물)

  • Lee, Dong-Hwan;Park, Soon-Heum
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.499-505
    • /
    • 2007
  • Monomeric complexes of nickel(II) having terdentate bis(imino)aryl ligands (N,C,N-pincer) are reported. New complexes (2,6-(ArN=CH)2C6H3)NiBr (Ar=2,6-dimethylphenyl (1), 2,6-diisopropylphenyl (2)) have been synthesized through oxidative addition of 1,3-(ArN=CH)2C6H3Br (bis(N-Ar)-2-bromoisophthalaldimine: Ar=Ph-2,6-Me2, Ph-2,6-iPr2) to Ni(COD)2 (COD=1,5-cyclooctadiene), in high yields. The development of a synthetic route to ligands and nickel complexes is outlined. The complexes were characterized by IR, 1H-NMR and elemental analysis. Full characterization of complexes 1 and 2 is discussed. An investigation into the catalytic activity of the complexes in ethylene polymerization was performed, resulting in no formation of polyethylenes but producing a small amount of oily oligomers. Preliminary results indicate that the pincer complexes were found to be inactive as catalysts in ethylene polymerization.