• Title/Summary/Keyword: Ar plasmas

Search Result 108, Processing Time 0.026 seconds

The Analysis of Light Emissions on Ar DC Glow Discharge under the Atmosphere Pressure (대기압 Ar 직류 글로우 방전에서 인가전압의 파형특성에 따른 광원효율 분석)

  • SO, Soon-Youl
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.865-872
    • /
    • 2019
  • We developed a one-dimensional Ar fluid model running in DC-type applied voltage with a sine and a pulse waveform at the atmosphere pressure. We investigated the light emissions and efficiencies of ${\lambda}_{128nm}$, ${\lambda}_{727nm}$, ${\lambda}_{912nm}$ and ${\lambda}_{966nm}$ from the Ar excited particles. From the results, the light emission of ${\lambda}_{128nm}$ and ${\lambda}_{727nm}$ in the applied voltage with a sine waveform were almost two times as in DC voltage type. The shorter the switching time of applied voltage was, the more the light emissions of ${\lambda}_{128nm}$ and ${\lambda}_{727nm}$ were. We discussed the power consumption and Joule heating by charged particles.

Effects of $CH_{2}F_{2}$ and $H_2$ flow rates on process window for infinite etch selectivity of silicon nitride to PVD a-C in dual-frequency capacitively coupled plasmas

  • Kim, Jin-Seong;Gwon, Bong-Su;Park, Yeong-Rok;An, Jeong-Ho;Mun, Hak-Gi;Jeong, Chang-Ryong;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.250-251
    • /
    • 2009
  • For the fabrication of a multilevel resist (MLR) based on a very thin amorphous carbon (a-C) layer an $Si_{3}N_{4}$ hard-mask layer, the selective etching of the $Si_{3}N_{4}$ layer using physical-vapor-deposited (PVD) a-C mask was investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in $CH_{2}F_{2}/H_{2}/Ar$ plasmas : HF/LF powr ratio ($P_{HF}/P_{LF}$), and $CH_{2}F_{2}$ and $H_2$ flow rates. It was found that infinitely high etch selectivities of the $Si_{3}N_{4}$ layers to the PVD a-C on both the blanket and patterned wafers could be obtained for certain gas flow conditions. The $H_2$ and $CH_{2}F_{2}$ flow ratio was found to play a critical role in determining the process window for infinite $Si_{3}N_{4}$/PVDa-C etch selectivity, due to the change in the degree of polymerization. Etching of ArF PR/BARC/$SiO_x$/PVDa-C/$Si_{3}N_{4}$ MLR structure supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the $Si_{3}N_{4}$ layer.

  • PDF

Effects of Ar Addition on the Etch Rates and Etch Profiles of Si Substrates During the Bosch Process (Bosch 공정에서 Si 식각속도와 식각프로파일에 대한 Ar 첨가의 영향)

  • Ji, Jung Min;Cho, Sung-Woon;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.755-759
    • /
    • 2013
  • The etch rate and etch profile of Si was investigated when Ar was added to an $SF_6$ plasma in the etch step of the Bosch process. A Si substrate was etched with the Bosch process using $SF_6$ and $SF_6$/Ar plasmas, respectively, in the etch step to analyze the effects of Ar addition on the etch characteristics of Si. When the Ar flow rate in the $SF_6$ plasma was increased, the etch rate of the Si substrate increased, had a maximum at 20% of the Ar flow rate, and then decreased. This was because the addition of Ar to the $SF_6$ plasma in the etch step of the Bosch process resulted in the bombardment of Ar ions on the Si substrate. This enhanced the chemical reactions (thus etch rates) between F radicals and Si as well as led to sputtering of Si particles. Consequently, the etch rate was higher more than 10% and the etch profile was more anisotropic when the Si substrate was etched with the Bosch process using a $SF_6$/Ar (20% of Ar flow rate) plasma during the etch step. This work revealed a feasibility to improve the etch rate and anisotropic etch profile of Si performed with the Bosch process.

The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2 Thin Films

  • Kim, Han-Soo;Woo, Jong-Chang;Joo, Young-Hee;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • In this study, we carried out an investigation of the etching characteristics (etch rate, and selectivity to $SiO_2$) of $ZrO_2$ thin films in a $CF_4$/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 60.8 nm/min for $ZrO_2$ thin films was obtained at a 20 % $CF_4/(CF_4+Ar)$ gas mixing ratio. At the same time, the etch rate was measured as a function of the etching parameter, namely ICP chamber pressure. X-ray photoelectron spectroscopy (XPS) analysis showed efficient destruction of the oxide bonds by the ion bombardment, as well as an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch characteristics for the $CF_4$-containing plasmas.

Etching characteristics of BST thin films using $BCl_3/Cl_2$/Ar plasma ($BCl_3/Cl_2$/Ar 플라즈마를 이용한 BST 박막의 식각 특성)

  • Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il;Lee, Chul-In;Kim, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.322-325
    • /
    • 2003
  • BST thin films were etched with inductively coupled plasmas. A chemically assisted physical etch of BST was experimentally confirmed by ICP under various gas mixtures. After a 20 % addition of $BCl_3$ to the $Cl_2/Ar$ mixture, resulting in an increased the chemical effect. As a increases of RF power, substrate power, and substrate temperature, and decrease of working pressure, the ion energy flux and chlorine atoms density increased. The maximum etch rate of the BST thin films was 90.1 nm/min at the RF power, substrate power, working pressure, and substrate temperature were 700 W, 300 W, 1.6 Pa, and 20 $^{\circ}C$, respectively. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching product.

  • PDF

Etch characteristics of ITO(Indium Tin Oxide ) using inductively coupled Ar/$CH_4$ plasmas (유도결합형 Ar/$CH_4$ 플라즈마를 이용한 ITO의 식각특성에 관한 연구)

  • 박준용;김현수;권광호;김곤호;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.565-571
    • /
    • 1999
  • In this study, high-density plasma etching characteristics of ITO(indium tin oxide) films used for transparent electrode in dispaly devices were investigated. Plasma diagnostic and surface analysis tools were used to understand etch reaction mechanism. The etch rate of ITO was increased by the increase of reactive radicals such as H and $CH_3$ with the addition of moderate amount of $CH_4$ to Ar. However, the addition of excess amount of $CH_4$ decreased possibly due to the increased polymer formation on the ITO surface being etched. The increase of source power and bias boltage increased ITO etch rates but it decreased selectivities over under-layers $(SiO_2, Si_3N_4)$. The increase of working pressure up to 20mTorr also increased ITO etch rates, however the further increased of the pressure decreased ITO etch rates. From the analysis of XPS, a peak related to the polymer of hydrocarbon was observed on the etched ITO surface especially for high $CH_4$ conditions and it appears to affect ITO etch rates.

  • PDF

Effect of N2/Ar flow rates on Si wafer surface roughness during high speed chemical dry thinning

  • Heo, W.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.128-128
    • /
    • 2010
  • In this study, we investigated the evolution and reduction of the surface roughness during the high-speed chemical dry thinning process of Si wafers. The direct injection of NO gas into the reactor during the supply of F radicals from NF3 remote plasmas was very effective in increasing the Si thinning rate, due to the NO-induced enhancement of the surface reaction, but resulted in the significant roughening of the thinned Si surface. However, the direct addition of Ar and N2 gas, together with NO gas, decreased the root mean square (RMS) surface roughness of the thinned Si wafer significantly. The process regime for the increasing of the thinning rate and concomitant reduction of the surface roughness was extended at higher Ar gas flow rates. In this way, Si wafer thinning rate as high as $20\;{\mu}m/min$ and very smooth surface roughness was obtained and the mechanical damage of silicon wafer was effectively removed. We also measured die fracture strength of thinned Si wafer in order to understand the effect of chemical dry thinning on removal of mechanical damage generated during mechanical grinding. The die fracture strength of the thinned Si wafers was measured using 3-point bending test and compared. The results indicated that chemical dry thinning with reduced surface roughness and removal of mechanical damage increased the die fracture strength of the thinned Si wafer.

  • PDF

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF

Etch Properties of HfO2 Thin Films using CH4/Ar Inductively Coupled Plasma

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.229-233
    • /
    • 2007
  • In this study, we carried out an investigation of the etching characteristics(etch rate, selectivity) of $HfO_2$ thin films in the $CH_4/Ar$ inductively coupled plasma. It was found that variations of input power and negative dc-bias voltage are investigated by the monotonic changes of the $HfO_2$ etch rate as it generally expected from the corresponding variations of plasma parameters. At the same time, a change in either gas pressure or in gas mixing ratio result in non-monotonic etch rate that reaches a maximum at 2 Pa and for $CH_4(20%)/Ar(80%)$ gas mixture, respectively. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4-containing$ plasmas.

Etch characteristics of ZnO thin films using an inductively coupled plasma (유도결합 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Dong-Pyo;Lee, Cheol-In;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.17-18
    • /
    • 2007
  • The etching characteristics of Zinc Oxide (ZnO) and etch selectivity of ZnO to $SiO_2\;in\;BCl_3$/Ar plasma were investigated. It was found that ZnO etch rate shows a non-monotonic behavior with increasing both Ar fraction in $BCl_3$ plasma, RF power, and gas pressure. The maximum ZnO etch rate of 50.3 nm/min was obtained for $BCl_3$ (80%)/Ar(20%) gas mixture. The plasmas were characterized using optical emission spectroscopy (OES) analysis measurements while chemical state of etched surfaces was investigated with X-ray photoelectron spectroscopy (XPS). From these data the suggestions on the ZnO etch mechanism were made.

  • PDF