• Title/Summary/Keyword: Ar plasmas

Search Result 108, Processing Time 0.03 seconds

Etch selectivities of mask materials for anisotropic dry etching of gas sensing ZnO and SnO2 films (가스 센서용 ZnO, SnO2 박막의 이방성 식각을 위한 mask 재료의 식각 선택도 조사)

  • Park, Jong-Cheon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.164-168
    • /
    • 2011
  • Etch selectivities of mask materials to ZnO and $SnO_2$ films were studied in $BCl_3$/Ar and $CF_4$/Ar inductively coupled plasmas for fabrication of nanostructure-based gas sensing layer with high aspect ratios. In $25BCl_3$/10Ar ICP discharges, selectivities of 5.1~6.1 were obtained for ZnO over Ni while no practical selectivity was obtained for ZnO over Al. High selectivities of 7 ~ 17 for ZnO over Ni were produced in $25CF_4$/10Ar mixtures. $SnO_2$ showed much higher etch rates than Ni and a maximum selectivity of 67 was observed for $SnO_2$ over Ni.

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Surface Reactions after the Etching of CeO$_2$ Thin films using Inductively Coupled C1$_2$/CF$_4$/Ar Plasmas (유도결합 C1$_2$/CF$_4$/Ar 플라즈마를 이용한 CeO$_2$ 박막 식각후 표면반응)

  • 이병기;김남훈;장윤성;김경섭;김창일;장의구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.27-31
    • /
    • 2002
  • In this study, $CeO_2$ thin films were etched with an addition of $Cl_2$ gas to $Ar/CF_4$ gas mixing in an inductively coupled plasma (ICP) etcher by the etching parameter such as RF power of 700 W, chamber pressure of 15 mTorr and dc bias voltage of -200 volts. The etch rate of $CeO_2$ films was 250 $\AA$/min with an addition of 10% $Cl_2$ gas to $Ar/CF_4$ gas mixture and the selectivity to SBT film was 0.4 at that condition. The surface reactions of the etched $CeO_2$ thin films were investigated by X-ray photoelectron spectroscopy (XPS). It was analyzed that Ce peaks were mainly observed in Ce-O bonds formed $CeO_2$ or $Ce_2O_3$ compounds. Cl peaks were detected by the peaks of Cl $2p_{3/2}$ and Cl $2p_{1/2}$. Almost all of Cl atoms were combined with Ce atoms like $CeCl_x$ or $Ce_x/O_yCl_z$ compounds.

  • PDF

Damages of Etched (Ba, Sr) $TiO_3$Thin Films by Inductively Coupled Plasmas (유도결합 플라즈마에 의한 (Ba,Sr)$TiO_3$박막의 식각 손상에 관한 연구)

  • 최성기;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.785-791
    • /
    • 2001
  • High dielectric (Ba, Sr) TiO$_3$ thin films were etched in an inductively coupled plasma (ICP) as a function of Cl$_2$/Ar mixing ration. Under Cl$_2$(20)/Ar(80), the maximum etch rate of the BST films was 400 $\AA$/mim and selectivities of BST to Pt and PR were obtained 0.4 and 0.2, respectively. Etching products were redeposited on the surface of BST and resulted in varying the nature of crystallinity. Therefore, we investigated the etched surface of BST by x-ray photoelectron spectroscopy (XPS) atomic force microscopy (AFM) and x-ray diffraction (XRD). From the result of XPS analysis, we found that residues of Ba-Cl and Ti-Cl bonds remained on the surface of the etched BST for high boiling point. The morphology of the etched surfact was analyzed by AFM. A smoothsurface(roughness ~2.8nm) ws observed under Cl$_2$(20)/Ar(80), rf power of 600 W, dc bias voltage of -250 V and pressure of 10 mTorr. This changed the nature of the crystallinity of BST. From the result of XRD analysis, the crystallinities of the etched BST film under Ar only and Cl$_2$(20)/Ar(80) were maintained as similar to as-deposited BST. However, intensity of BST(100) orientation under Cl$_2$ only plasma was abruptly decreased. This indicated that CI compounds were redeposited on the etched BST surface and resulted in changed of the crystallinity of BST during the etch process.

  • PDF

The Effect Of Additive $N_2$ Gas In Pt Film Etching Using Inductively Coupled $Cl_2/Ar$ Plasmas ($Cl_2/Ar$ 유도 결합 플라즈마에서 Pt 박막 식각시 $N_2$ 가스 첨가 효과)

  • Ryu, Jae-Heung;Kim, Nam-Hoon;Chang, Eui-Goo;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.1-6
    • /
    • 2000
  • In this study, the effects of the addition of $N_2$ gas into the $Cl_2$ (90)/Ar(10) gas mixture, which has been proposed as the optimized etching gas combination, for etching of platinum was performed. The selectivity of platinum film to $SiO_2$ film etch mask increased with the addition of $N_2$ gas, and etch profile over 75 $^{\circ}$ could be obtained when 20 % additive $N_2$ gas was added. These phenomena were interpreted as the results of a formation of blocking layer such as Si-N or Si-O-N on the $SiO_2$ mask. The maximum etch rate of Pt film and selectivity of Pt to $SiO_2$ are 1425 ${\AA}$/min and 1.71, respectively. These improvements were considered to be due to the formation of more volatile compounds such as Pt-N or Pt-N-Cl.

  • PDF

The reduction of etching damage in lead-zirconate-titanate thin films using Inductively Coupled Plasma (Inductively Coupled Plasma를 이용한 lead-zirconate-titanate 박막의 식각 손상 개선)

  • Lim, Kyu-Tae;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.178-181
    • /
    • 2003
  • In this work, we etched PZT films with various additive gases ($O_2$ and Ar) in $Cl_2/CF_4$ plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in $O_2$ or Ar added $Cl_2/CF_4$ were compared, the value of remanent polarization in $O_2$ added $Cl_2/CF_4$ plasma is higher than that in Ar. added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added $Cl_2/CF_4$ gas having mixing ratio of 8/2 and 110 nm/min for 10% $O_2$ added to that same gas mixture. In order to recover the ferroelectic properties of the PZT thin films after etching, we annealed the etched PZT thin films at $550^{\circ}C$ in an $O_2$ atmosphere for 10 min. From the hysteresis curves, leakage current, retention property and switching polarization, the reduction of the etching damage and the recovery via the annealing was turned out to be more effective when $O_2$ was added to $Cl_2/CF_4$ than Ar. X-ray diffraction (XRD) showed that the structural damage was lower when $O_2$ was added to $Cl_2/CF_4$. And the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks.

  • PDF

The etching properties of $Al_2O_3$ thin films in $N_2/Cl_2/BCl_3$ and Ar/$Cl_2/BCl_3$ gas chemistry (유도결합 플라즈마를 이용한 $Al_2O_3$ 식각 특성)

  • Koo, Seong-Mo;Kim, Dong-Pyo;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.72-74
    • /
    • 2004
  • In this study, we used a inductively coupled plasma (ICP) source for etching $Al_2O_3$ thin films because of its high plasma density, low process pressure and easy control bias power. $Al_2O_3$ thin films were etched using $Cl_2/BCl_3$, $N_2/Cl_2/BCl_3$, and Ar/$Cl_2/BCl_3$ plasma. The experiments were carried out measuring the etch rates and the selectivities of $Al_2O_3$ to $SiO_2$ as a function of gas mixing ratio, rf power, and chamber pressure. When $Cl_2$ 50% was added to $Cl_2/BCl_3$ plasma, the etch rate of the $Al_2O_3$ films was 118 nm/min. We also investigated the effect of gas addition. In case of $N_2$ addition, the etch rate of the $Al_2O_3$ films decreased while $N_2$ was added into $Cl_2/BCl_3$ plasma. However, the etch rate increased slightly as Ar added into $Cl_2/BCl_3$ plasma, and then further increase of Ar decreased the etch rate. The maximum etch rate was 130 nm/min at Ar 20% in $Cl_2/BCl_3$ plasma, and the highest etch selectivity was 0.81 in $N_2$ 20% in $Cl_2/BCl_3$ plasma. And, we obtained the results that the etch rate increases as rf power increases and chamber pressure decreases. The characteristics of the plasmas were estimated using optical emission spectroscopy (OES).

  • PDF

High Density Inductively Coupled Plasma Etching of InP in BCl3-Based Chemistries (BCl3 기반의 혼합가스들을 이용한 InP 고밀도 유도결합 플라즈마 식각)

  • Cho, Guan-Sik;Lim, Wan-tae;Baek, In-Kyoo;Lee, Je-won;Jeon, Min-hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.775-778
    • /
    • 2003
  • We studied InP etching in high density planar inductively coupled $BCl_3$and $BCl_3$/Ar plasmas(PICP). The investigated process parameters were PICP source power, RIE chuck power, chamber pressure and $BCl_3$/Ar gas composition. It was found that increase of PICP source power and RIE chuck power increased etch rate of InP, while that of chamber pressure decreased etch rate. Etched InP surface was clean and smooth (RMS roughness <2 nm) with a moderate etch rate (300-500 $\AA$/min) after the planar $BCl_3$/Ar ICP etching. It may make it possible to open a new regime of InP etching with $CH_4$$H_2$-free plasma chemistry. Some amount of Ar addition (<50%) also improved etch rates of InP, while too much Ar addition reduced etch rates of InP.

A Study on the Etching Mechanism of $(Ba, Sr)TiO_3$ thin Film by High Density $BCl_3/Cl_2/Ar$ Plasma ($BCl_3/Cl_2/Ar$ 고밀도 플라즈마에 의한 $(Ba, Sr)TiO_3$ 박막의 식각 메커니즘 연구)

  • Kim, Seung-Bum;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.18-24
    • /
    • 2000
  • (Ba,Sr)$TiO_3$ thin films have attracted great interest as new dielectric materials of capacitors for ultra-large-scale integrated dynamic random access memories (ULSI-DRAMs) such as 1 Gbit or 4 Gbit. In this study, inductively coupled $BCl_3/Cl_2/Ar$ plasmas was used to etch (Ba,Sr)$TiO_3$ thin films. RF power/dc bias voltage=600 W/-250 V and chamber pressure was 10 mTorr. The $Cl_2/(Cl_2+Ar)$ was fixed at 0.2 the (Ba,Sr)$TiO_3$ thin films were etched adding $BCl_3$. The highest (Ba,Sr)$TiO_3$ etch rate is $480{\AA}/min$ at 10 % $BCl_3$ to $Cl_2/Ar$. The change of Cl, B radical density measured by optical emission spectroscopy(OES) as a function of $BCl_3$ percentage in $Cl_2/Ar$. The highest Cl radical density was shown at the addition of 10% $BCl_3$ to $Cl_2/Ar$. To study on the surface reaction of (Ba, Sr)$TiO_3$ thin films was investigated by XPS analysis. Ion bombardment etching is necessary to break Ba-O bond and to remove $BaCl_2$. There is a little chemical reaction between Sr and Cl, but Sr is removed by physical sputtering. There is a chemical reaction between Ti and Cl, and $TiCl_4$ is removed with ease. The cross-sectional of (Ba,Sr)$TiO_3$ thin film was investigated by scanning electron microscopy (SEM), the etch slope is about 65~70$^{\circ}$.

  • PDF