• 제목/요약/키워드: Aqueous zinc-ion battery

검색결과 6건 처리시간 0.024초

수계 아연 이차 전지 아연 음극 안정성 및 안전성 향상 전략 ( Strategies for Enhancing Zinc Anode Stability and Safety in Aqueous Zinc Secondary Battery)

  • 박종진;서경태;김용태
    • 한국표면공학회지
    • /
    • 제57권5호
    • /
    • pp.368-378
    • /
    • 2024
  • The growing environmental concerns due to increased fossil fuel consumption have intensified the demand for sustainable and economically viable energy sources. Among the various energy storage devices, lithium-ion batteries (LIBs) are widely used in electronic devices and electric vehicles due to their high energy density and excellent cycle life. However, LIBs face challenges such as safety concerns due to side reactions, thermal expansion, and explosion risks, along with issues of limited resource availability and high costs. As a result, multivalent metals such as calcium, magnesium, zinc, iron, and aluminum are being explored as alternatives to lithium. Recently, there has been significant interest in developing aqueous zinc-ion battery (AZIB) due to their use of water as an electrolyte solvent, which enhances safety by reducing the risk of fire even in the event of a short circuit. Additionally, AZIBs offer benefits such as non-toxicity, fast ion conductivity, high volumetric capacity, and cost-effectiveness due to the abundance of zinc. Despite these advantages, AZIBs face challenges including dendrite formation on the zinc anode during cycling, leading to short circuits, corrosion, and hydrogen gas evolution, which can compromise battery performance and safety. This review discusses the underlying mechanisms of these issues and explores various strategies to stabilize the zinc anode and improve the overall performance of AZIBs.

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향 (Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie)

  • 조정근;김재국
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

수계전해질기반 차세대 금속이온전지 기술 (Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes)

  • 신동옥;최재철;강석훈;박영삼;이영기
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.83-94
    • /
    • 2024
  • There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.

헥사시아노 철산철 활물질의 전기화학적 특성에 미치는 전해질 농도의 영향 (Effects of Electrolyte Concentration on Electrochemical Properties of an Iron Hexacyanoferrate Active Material)

  • 양은지;이상엽;말도나도노잘레스폴;정순기
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.117-123
    • /
    • 2021
  • 수계 아연 이온 전지의 신규 전극 활물질로서 헥사시아노 철산철(Fe4[Fe(CN6)]3, FeHCF)의 전기화학적 특성에 미치는 전해질 농도의 영향에 관하여 조사하였다. FeHCF 전극의 전기화학 반응 및 구조적 안정성에 전해질 농도가 크게 영향을 준다는 것이 전위 주사, 충전-방전 시험, X-선 회절 분석에 의해 확인되었다. 1.0-7.0 mol dm-3의 전해질 용액에서는 농도가 증가함에 따라 FeHCF 전극의 충전 및 방전 용량이 증가하였으나 사이클이 진행됨에 따라 서서히 감소하였다. 반면에 9.0 mol dm-3의 전해질 용액에서는 초기 용량은 상대적으로 작았으나 사이클 특성이 우수하였다. 전자의 전해질 용액에서 5사이클 진행된 FeHCF 전극은 반응 전과 비교하여 결정 구조에 변화가 있었으며, 후자의 경우에는 변화가 없었다. 이것은 FeHCF 전극의 전기화학적 성능이 전해질 용액 중에 존재하는 아연 이온의 수화 구조와 크게 관련이 있음을 시사하는 것이다.

수용액중 아연 덴드라이트의 성장 반응에 미치는 전해질 농도의 영향 (Effects of Electrolyte Concentration on Growth of Dendritic Zinc in Aqueous Solutions)

  • 신경희;정규남;윤수근;연순화;심준목;전재덕;진창수;김양수;박경수;정순기
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.390-396
    • /
    • 2012
  • In order to understand the nature of dendritic zinc growth, electrochemical zinc redox reaction on nickel plate was investigated in aqueous solutions containing different concentrations, 0.2, 0.1 and 0.02 $mol{\cdot}dm^{-3}$ (M), of zinc sulfate ($ZnSO_4$) or zinc chloride ($ZnCl_2$). Zinc ion was efficiently reduced and oxidized on nickel in the high-concentration (0.2 M) solution, whereas relatively poor efficiency was obtained from the other low-concentration solutions (0,1 and 0.02 M). Cyclic voltammetry (CV) analysis revealed that the 0.2 M electrolyte solution decomposes at more positive potentials than the 0.1 and the 0.02 M solutions. These results suggested that the concentration of electrolyte solution and anion would be an important factor that suppresses the reaction of the zinc dendrite formation. Scanning Electron Microscopy (SEM) data revealed that the shape of dendritic zinc and its growing behavior were also influenced by electrolyte concentration.