Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.02.117

Effects of Electrolyte Concentration on Electrochemical Properties of an Iron Hexacyanoferrate Active Material  

Yang, Eun-Ji (Dept. of Energy Systems Engineering, Soonchunhyang University)
Lee, Sangyup (Dept. of Energy Systems Engineering, Soonchunhyang University)
Nogales, Paul Maldonado (Dept. of Energy Systems Engineering, Soonchunhyang University)
Jeong, Soon-Ki (Dept. of Energy Systems Engineering, Soonchunhyang University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.2, 2021 , pp. 117-123 More about this Journal
Abstract
The effects of electrolyte concentration on the electrochemical properties of Fe4[Fe(CN6)]3(FeHCF) as a novel active material for the electrode of aqueous zinc-ion batteries was investigated. The electrochemical reactions and structural stability of the FeHCF electrode were significantly affected by the electrolyte concentration. In the electrolyte solutions of 1.0-7.0 mol dm-3, the charge-discharge capacities increased with increasing electrolyte concentration, however gradually decreased as the cycle progressed. On the other hand, in the 9.0 mol dm-3 electrolyte solution, the initial capacity was relatively small, however showed good cyclability. Additionally, the FeHCF electrode after five cycles in the former electrolyte solutions, had a change in crystal structure, whereas there was no change in the latter electrolyte solution. This suggests that the performance of the FeHCF electrode is greatly influenced by the hydration structure of zinc ions present in electrolyte solutions.
Keywords
Zinc ion battery; Aqueous electrolyte; Energy storage; Electrolyte concentration; Hydration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang & C. Zhi. (2020). Voltage Issue of Aqueous Rechargeable Metal-Ion Batteries. Chemical Society Reviews, 49(1), 180-232. DOI : 10.1039/C9CS00131J   DOI
2 Q. Liu, Z. Pan, E. Wang, L. An & G. Sun. (2020). Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Materials, 27, 478-505. DOI : 10.1016/j.ensm.2019.12.011   DOI
3 J. Liu, C. Xu, Z. Chen, S. Ni & Z. X. Shen. (2018). Progress in Aqueous Rechargeable Batteries. Green Energy & Environment, 1(3), 20-41. DOI : https://doi.org/10.1016/j.gee.2017.10.001   DOI
4 J. O. G. Posada et al. (2017). Aqueous Batteries as Grid Scale Energy Storage Solutions. Renewable and Sustainable Energy Reviews, 68(2), 1174-1182.   DOI
5 J. O. G. Posada & P. J. Hall. (2014). Multivariate Investigation of Parameters in the Developmentand Improvement of NiFe Cells. Journal of Power Sources, 262, 263-269. DOI : 10.1016/j.jpowsour.2014.03.145   DOI
6 X. Jia, C. Liu, Z. G. Neale, J. Yang & G. Cao. (2020). Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120(15), 7795-7866. DOI : 10.1021/acs.chemrev.9b00628   DOI
7 G. Fang, J. Zhou, A. Pan & S. Liang. (2018). Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 3(10), 2480-2501. DOI : 10.1021/acsenergylett.8b01426   DOI
8 S. Wheeler, I. Capone, S. Day, C. Tang & M. Pasta. (2019). Low-Potential Prussian Blue Analogues for Sodium-Ion Batteries: Manganese Hexacyanochromate. Chemistry of Materials, 31(7), 2619-2626. DOI : 10.1021/acs.chemmater.9b00471   DOI
9 F. Grandjean, L. Samainb & G. J. Long. (2016). Characterization and Utilization of Prussian Blue and Its Pigments. Dalton Transactions, 45, 18018-18044. DOI : 10.1039/C6DT03351B   DOI
10 P. Nie et al. (2014). Prussian Blue Analogues: A New Class of Anode Materials for Lithium Ion Batteries. Journal of Materials Chemistry A, 2(16), 5852-5857. DOI : 10.1039/c4ta00062e   DOI
11 C. Lee & S. Jeong. (2018). Modulating the Hydration Number of Calcium Ions by Varying the Electrolyte Concentration: Electrochemical Performance in a Prussian Blue Electrode/Aqueous Electrolyte System for Calcium-ion Batteries. Electrochimica Acta, 265(7), 430-436. DOI : 10.1016/j.electacta.2018.01.172   DOI
12 C. Lee & S. Jeong. (2016). A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries. Chemistry Letters, 45(12), 2619-2626. DOI : 10.1021/acs.chemmater.9b00471   DOI
13 C. Lee & S. Jeong. (2015). Raman Spectroscopy for Understanding of Lithium Intercalation into Graphite in Propylene Carbonated-Based Solutions. Journal of Spectroscopy, 323649. DOI : 10.1155/2015/323649   DOI
14 K. Hurlbutt, S. Wheeler, I. Capone & M. Pasta. (2018). Prussian Blue Analogs as Battery Materials. Joule, 2(10), 1950-1960. DOI : 10.1016/j.joule.2018.07.017   DOI
15 H. J. Buser, D. Schwarzenbach, W. Petter & A. Ludi. (2018). The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3..xH2O. Inorganic Chemistry, 16(11), 2704-2710. DOI : 10.1021/ic50177a008   DOI