• Title/Summary/Keyword: Aqueous system

Search Result 1,119, Processing Time 0.04 seconds

Liquid Extraction of Succinic Acid by Aqueous Two-Phase Systems Composed of Piperidinium Ionic Liquids and Phosphate Salt (피페리딘계 이온성 액체와 포스페이트 염으로 구성된 수상이성분계를 이용한 숙신산의 추출)

  • Lee, Woo Yun;Hong, Yeon Ki
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • As an effective method for extraction of succinic acid, aqueous two-phase systems based on piperidinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in piperinidium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of piperidinium ionic liquids to aqueous $K_2HPO_4$ solutions. It can be found that the ability of piperidinium ionic liquids for phase separation followed the order [OMPip][Br]>[HMPip][Br]>[BMPip][Br]>[EMPip][Br]. The biphase-forming ability of piperidinium ionic liquids was higher than that of imidazolium and pyrrolidinium ionic liquids in the presence of $K_2HPO_4$. 75~95% of the succinic acid could be extracted into the ionic liquid-rich phase in a single-step extraction. There was little difference in the extraction efficiency of succinic acid by piperidinium ionic liquids comparing to other ionic liquids such as imidazolium and pyrrolonidium ionic liquids. This aqueous two phase system by piperidinium ionic liquid is suggested to have effective application for the separation of succinic acid.

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material

  • Lee, Dong-Hee;Ryu, Taegong;Shin, Junho;Kim, Young Ho
    • Carbon letters
    • /
    • v.28
    • /
    • pp.87-95
    • /
    • 2018
  • This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.

Extractive Ethanol Fermentation Characteristics of K.fragilis in an Aqueous Two Phase System (수성이상계에서 K.fragilis의 에탄올 추출발효 특성에 관한 연구)

  • 김진한;허병기목영일
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.443-449
    • /
    • 1994
  • Fermentation characteristics of Kluyveromyces fragilis CBS 1555 with Jerusalem artichoke juice, in extractive ethanol fermentation in aqueous two phase systems composed of polyethylene glycol 20000 (PEG) and crude dextran(Dx), were investigated as a function of initial sugar concentrations, concentrations of ethanol formed, or fermentation time. Both specific ethanol production rate increased with decrease in concentrations of PEG and Dx in two-phase systems. Without being related to the compositions of aqueous two-phase system, maximum specific cell growth rate and maximum specific ethanol production rate were showed in the initial sugar concentration fo $80g/\ell$ and $120g/\ell$, respectively. The inhibition effects of ethanol on specific cell growth rate and specific ethanol production rate decreased with decrease in PEG concentration and in the range of 2.5 to 5% Dx. Specific cell growth rate and specific ethanol production rate was fitted as an exponential function and a hyperbolic function, respectively, of the concentrations of ethanol formed. Overall ethanol productivity increased with increase in initial sugar concentrations, and also the required time for the maximum productivity was so. Ethanol production rate by the elapsed fermentation time showed the maximum value in the initial sugar concentration of $160g/\ell$.

  • PDF

Control of Particle Alignment in an Aqueous Colloidal System by an AC Electric Field (수계 콜로이드 계에서 교류 전계에 의한 입자 배열 제어)

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.13-17
    • /
    • 2013
  • The alignments of polystyrene particles of $1{\mu}m$ and $5{\mu}m$ sizes in an aqueous colloidal system were observed by varying the electric field strength, the frequency and the water flow. Spherical mono-dispersed polystyrene particles dispersed in pure water were put into a perfusion chamber; an AC electric field was applied to the Au/Cr electrodes with a 4 mm gap on the glass substrate. The mixture of the $1{\mu}m$ and $5{\mu}m$ sized polystyrene particles at 0.5 vol% concentrations for each size was set in the dielectrophoresis conditions of 1 kHz and 150 V/cm. Large particles of $5{\mu}m$ size were aligned to form chains as the result of the dielectrophoresis force interaction. On the contrary, small particles of $1{\mu}m$ size did not form chains because the dielectrophoresis force was not sufficiently large. When the electric field increased to 250 V/cm, small particles were able to form chains. After the chains were formed from both large and small particles, they began to coalescence as time passed. Owing to the electroosmotic flow of water, wave patterns along the perpendicular direction of the applied electric field appeared at the conditions of 200 Hz and 50 V/cm, when the dielectrophoresis force was small. This wave pattern also appeared for small particles at 1 kHz and 150 V/cm conditions due to the flow of solvent when water was forced to circulate.

Removal of Cadmium. Copper and Chromium Ions in Aqueous Solution using Water in Oil Micro-Emulsion (W/O 마이크로에멀젼을 이용한 수용액중의 카드뮴, 구리 및 크롬이온의 분리제거)

  • Lee, Sung-Sik;Lee, Eun-Joo;Kim, Hyung-Jun;Kim, Jong-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1021-1026
    • /
    • 2000
  • The removal of cadmium, copper and chromium ions was carried in a phase transfer reactor using W/O(water in oil) microemulsion containing sodium di[2-ethylhexyl] sulfosuccinate(AOT) and isooctane system. Removal efficiencies and mass transfer rate of $Cd^{2+}$, $Cu^{2+}$ and $Cr^{3+}$ were increasing with increasing pH of aqueous solution. However, $Cr^{6+}$ was not extracted by W/O microemulsion with AOT/isooctane system. It was found that removal of heavy metal ions were required an attractive electrostatic interaction between the metal ions and W/O microemulsion. The relationship between mass transfer rate. Jo of $Cd^{2+}$, $Cu^{2+}$ and $Cr^{3+}$ and pH of aqueous solution by W/O microemulsion suggested.

  • PDF

An Experimental Study on Freezing Behavior of NaCl and Heavy Metal Aqueous Solution Using Freeze Concentration Method (동결농축법을 이용한 염수 및 중금속 수용액의 동결거동에 관한 실험 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • Recently, waste water treatment system is developed in small and middle size to get more economic advantage. Freeze concentration system has high thermodynamic efficiency and low energy consumption, can re-use purified water and cold energy obtained from ice. This study was experimentally performed to investigate pollution containment in frozen layer by cooling wall temperature, air-bubble flow methods, initial ice-lining thickness of frozen layer in NaCl aqueous solution and the representative heavy metals, Pb and Cr aqueous solution. As the result, a decrease in the cooling wall temperature bring a higher growth rate of ice front and the more solute was involved in frozen layer. The method to inject directly air-bubble into ice-liquid interface through ring shape nozzle gave high purity of ice compared to indirect method. Ice lining in 5mm thickness resulted in frozen layer with higher purity than 1mm thickness.

Henry′s constants of TCE and PCE in surfactant solutions

  • 양중석;백기태;권태순;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.315-317
    • /
    • 2004
  • Henry's law constants of trichloroethylene (TCE) and tetrachloroethylene (PCE) in air-aqueous surfactant systems were determined by gas chromatography headspace analysis of closed system. The effect of surfactant type and concentration was investigated.

  • PDF

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

An ESR Study of Amino Acid and Protein Free Radicals in Solution Part VI. Enzymatic Inactivation of Lysozyme in Aqueous Solution Resulting from Exposure to $Ti-H_2O_2$ System and Gamma-Irradiation

  • Hong, Sun-Joo;Piette, L.H.
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.80-83
    • /
    • 1972
  • The activity change of lysozyme resulted from its exposure to $Ti-H_2O_2$system in aqueous liquid at room temperature and to ${\gamma}$-irradiation in ice at $195^{\circ}K$ has been measured at room temperature with a Cary-14 spectrophotometer. The enzymatic activity of lysozyme which had been added to a previously flow-mixed solution of $TiCl_3$ and $H_2O_2$ (System I) was compared with the activity of a lysozyme-$H_2O_2$ solution after flow-mixing with $TiCl_3$ (System II), considering the differences between these two activity changes as the extent of the enzymatic inactivation by the involvement of OH radical reaction. The fraction of lysozyme inactivated by OH radical in the system containing 0.0025 M $TiCl_3-0.1M$ $H_2O_2$ (ph 3.5) was 13%, When the $TiCl_3$ concentration is double (pH 3.0), the fraction of enzyme inactivated increases to 36%. The activity of the system containing 0.025 M $TiCl_3-0.1$ M $H_2O_2$ (pH 1.5) was essentially zero. The results seem to support the previos view that the production of OH radical should be proportional to $TiCl_3$ concentration when $H_2O_2$ is present in excess. Increase in the extent of inactivation found in system I with increasing $TiCl_3$ concentration may be due to a pH effect. $H_2O_2$ seems to be less effective than $TiCl_3$ in the inactivation. 1% lysozyme solution, when ${\gamma}$-irradiated with a total dose of 3M rads, loses about 20% of its activity. Lowering of temperature also was found to yield a reduction in enzymatic activity.

  • PDF