• Title/Summary/Keyword: Aqueous alkaline solution treatment

Search Result 19, Processing Time 0.025 seconds

A Study on the Alkaline Degradation Properties of Silk Fabrics for Costume Heritage Restoration (유물 복원을 위한 실크 직물의 알칼리에 의한 열화 특성 연구)

  • Jeon Cho-Hyun;Kwon Young-Suk;Lee Sang-Joon;Cho Hyun-Hok
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.41-47
    • /
    • 2005
  • Costume heritages of an excavated silk fabrics should be preserved without damage. In order to artificially restore the excavated silk fabrics, alkaline aqueous solution, as a simulated corpse, and two kinds of silk fabrics were used. Two kinds of silk fabrics were treated by aqueous alkaline solution according to strength retention value(100, 80, 60, 40, 20$\%$). The fine structure and physical properties of alkaline treated silk fabrics were investigated with various techniques such as wide-angle X-ray diffraction, tensile test, weight loss, shrinkage, SEM. and yellowness. As the alkaline treatment time increased tensile strength of silk fabrics decreased. However, weight loss and shrinkage slightly increased. The diffraction intensity of $\beta-form$ crystal declined and $\alpha-form$ crystal diffraction intensity disappeared with the treatment.

Effect of Corrosion Conditions on the Luster Change of Metallic Yarns and Fabric - Analysis of Changes in Reflection and Transmission -

  • Shin, Hye-Sun;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.12 no.3
    • /
    • pp.54-61
    • /
    • 2008
  • The glitter of lame fabrics containing the metallic yarns may further be altered by $Na_2CO_3$ aqueous solution at an elevated temperature. In this study, the effect of the corrosion treatment on the yarn luster was evaluated using image analysis. The alkaline solution treatment was found to be more effective on the aluminum-based specimens than on the silver-based specimens. It was found that corrosion percentage measurement based on the transmission analysis may provide reasonable quantitative index, even if the measurement relies on an indirect method. Based on the quantitative results, the alkaline treatment condition for the specific specimen would be optimized for a desired glitter modification.

An Addition Effect of Amine and Cethyl Trimethyl Ammonium Bromide on Alkali-treatment of Polyester (폴리에스테르직물의 수산화나트륨 처리시 아민과 CTAB의 첨가효과)

  • Lee Jung Soon;Ryu Hyo Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.3 s.43
    • /
    • pp.335-344
    • /
    • 1992
  • This study was conducted to investigate the influence of addition of cetyl trimethyl ammo­nium bromide (CTAB), and amine [ethylamine (EA) or ethylene diamine (EDA)] to aqueous sodium hydroxide (NaOH) solution on polyester alkaline hydrolysis, The experimental vari­ables such as CTAB concentration, EA or EDA concentration, NaOH concentration, tempera­ture and time were compared, and the changes in physical and chemical properties of alkaline­hydrolyzed PET fabrics depending on their treated conditions were measured, The results are as follows: 1. By adding CTAB and amine in aqueous NaOH solution, increasing effect on weight loss of PET fabrics was obtained in simultaneous addition of CTAB and EDA, but not in CTAB and EA. 2. By adding CTAB & EDA simultaneously, increasing effect on weight loss was obtained regardless of EDA concentration, time and temperature, and it was more effective at lower NaOH concentration. :l. The increase of void space (or irregularly grooved surface), of softness, of wickability, of dyeability on PET fabric, and the decrease of tensile strength, of molecular weight were observed according to the weight loss on the PET fabrics. These changes were equal to all alkaline-hydrolyzed PET fabrics regardless of addition of CTAB and amine. l. There was little changes on crystallinity, thermal behavior when PET fiber was treated with ,aqueous NaOH solution with CTAB and EDA. These results supported that increasing effect on weight loss take place without inducing of fine structural change of PET fibers.

  • PDF

Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH (NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성)

  • ;;;Lee, Si-Hong;Lee, Sang-Uk;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.141-141
    • /
    • 2018
  • Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap ($E_g$) of 1.2-2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2-7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using $NH_3-H_2O_2$ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in $NH_4OH$ at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanostructures with high uniformity and density. It is interesting to compare the gas sensing properties among CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at $50-70^{\circ}C$. The gas sensing properties of the as-prepared CuO nanoplates were examined with $C_2H_5OH$, $CH_3COCH_3$, and $NH_3$ at $200-360^{\circ}C$.

  • PDF

2, 4, 6-Trinitrotoluene(TNT) Treatment by the Alkaline Hydrolysis (가수분해에 의한 2, 4, 6-Trinitrotoluene(TNT) 처리)

  • Kwon, Bumgun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.69-74
    • /
    • 2012
  • This study investigated the TNT decomposition by the treatment of alkaline hydrolysis. To obtain this objecitive, spectrum shift characteristics, pH effect, kinetics, and product analysis were examined during the alkaline hydrolysis by means of hydroxide ions. At pH = 12, an aqueous solution of TNT was changed into yellow-brown coloring, in which its absorbances were newly increased in a range of wavelength 400-600 nm. From the kinetic data, pseudo-first-order rate constant in a excess of hydroxide ion, in contrast to TNT concentration, was $0.0022min^{-1}$, which means that the reaction rate between TNT and hydroxide ion can be very slow, and that 1,047 min is necessary to achieve a 90% reduction of the initial TNT. In products analyses, nitrite ions and formic acid were mainly produced by the alkaline hydrolysis, nitrate ions and oxalic acid as minor products were generated.

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

A Study on Laboratory Treatment of Metalworking Wastewater Using Ultrafiltration Membrane System and Its Field Application (한외여과막시스템을 이용한 금속가공폐수의 실험실적 처리 및 현장 적용 연구)

  • Bae, Jae Heum;Hwang, In-Gook;Jeon, Sung Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.487-494
    • /
    • 2005
  • Nowadays a large amount of wastewater containing metal working fluids and cleaning agents is generated during the cleaning process of parts working in various industries of automobile, machine and metal, and electronics etc. In this study, aqueous or semi-aqueous cleaning wastewater contaminated with soluble or nonsoluble oils was treated using ultrafiltration system. And the membrane permeability flux and performance of oil-water separation (or COD removal efficiency) of the ultrafiltration system employing PAN as its membrane material were measured at various operating conditions with change of membrane pore sizes and soil concentrations of wastewater and examined their suitability for wastewater treatment contaminated with soluble or insoluble oil. As a result, in case of wastewater contaminated with soluble oil and aqueous or semi-aqueous cleaning agent, the membrane permeability increased rapidly even though COD removal efficiency was almost constant as 90 or 95% as the membrane pore size increased from 10 kDa to 100 kDa. However, in case of the wastewater contaminated with nonsoluble oil and aqueous or semi-aqueous cleaning agent, as the membrane pore size increased from 10 kDa to 100 kDa and the soil concentration of wastewater increased, the membrane permeability was reduced rapidly while COD removal efficiency was almost constant. These phenomena explain that since the membrane material is hydrophilic PAN material, it blocks nonsoluble oil and reduces membrane permeability. Thus, it can be concluded that the aqueous or semi-aqueous cleaning solution contaminated with soluble oil can be treated by ultrafiltration system with the membrane of PAN material and its pore size of 100 kDa. Based on these basic experimental results, a pilot plant facility of ultrafiltration system with PAN material and 100 kDa pore size was designed, installed and operated in order to treat and recycle alkaline cleaning solution contaminated with deep drawing oil. As a result of its field application, the ultrafiltration system was able to separate aqueous cleaning solution and soluble oil effectively, and recycle them. Further more, it can increase life span of aqueous cleaning solution 12 times compared with the previous process.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Removal of Cs+, Sr2+, and Co2+ Ions from the Mixture of Organics and Suspended Solids Aqueous Solutions by Zeolites

  • Fang, Xiang-Hong;Fang, Fang;Lu, Chun-Hai;Zheng, Lei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.556-561
    • /
    • 2017
  • Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as $Sr^{2+}$, $Cs^+$, and $Co^{2+}$ in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as $Sr^{2+}$, $Cs^+$, and $Co^{2+}$ with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater.

An Experimental Study on Corrosion Behavior in Steel of Concrete Applied with Arc Metal Spray Method Surface Treatment Technology Using EIS (EIS를 이용한 아크 금속용사 표면처리기법이 적용된 강재의 콘크리트 내 부식 거동에 관한 실험적 연구)

  • Yoon, Chang-Bok;Park, Jang hyun;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.87-95
    • /
    • 2020
  • As an experimental study on the corrosion behavior of steel materials to which ATMS method using EIS was applied in concrete, immersion of Ca(OH)2 saturated aqueous solution and NaCl aqueous solution simulating the environment inside concrete The corrosion behavior was tested. The equivalent circuit was derived through the analysis of the Nyquist plot, and the interfacial resistance and the polarization resistance of the Ca(OH)2 aqueous solution were compared, and Al ATMS was the best interfacial resistance and Zn ATMS was the best polarization resistance. After burying ATMS steel material of cement mortar, the initial immersion impedance measurement value was the highest in the Zn ATMS test body in the impedance measurement by the immersion time by immersing it in the NaCl aqueous solution. Al ATMS test piece has the highest impedance and is highly reliable. This is because Al, which has a high ionization tendency, is continuously oxidized in a strong alkaline environment to form a film and protect the steel from permeation of chlorine ions.