• Title/Summary/Keyword: Aqueous Absorbents

Search Result 26, Processing Time 0.034 seconds

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

Comparison of Removal Capabilities among Several Aqueous Amine Absorbents for Sweeting Acid Gases Contained in Natural Gas (다양한 아민 흡수제를 이용한 천연가스 중에 포함되어 있는 산성가스 제거 성능 비교)

  • Cho, Du-hee;Kim, Dong-sun;Cho, Jung-ho
    • Plant Journal
    • /
    • v.10 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Simulation works for comparing removal capabilities of acid gases contained in natural gas among several aqueous amine absorbents using commercial process simulator PROMAX(BR&E Co.) were carried out. Amine aqueous solution used in this study were 30 wt% MEA, 30 wt% DEA, 50 wt% MDEA, and 50 wt% MDEA with 3 wt% piperazine as additive. We obtained the simulated results that while MEA aqueous solution is relatively capable of more $CO_2$ gas, but DEA, MDEA, MDEA aqueous solutions with piperazine as additive are capable of more $H_2S$ gas. Also, we found that 30 wt% MDA aqueous solution is the smallest circulate rate of lean amine solution, and 50 wt% MDEA aqueous solution with 3 wt% piperazine as additive is the smallest heat duty in stripping unit. 50 wt% MDEA aqueous solution with 3 wt% piperazine as additive is found less amine circulation rate than 50 wt% MDEA due to the introduction of additive.

  • PDF

Absorption Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine Absorbents Mixed with Physical Solvents (물리 흡수제를 포함한 디에틸렌트리아민(Diethylenetriamine) 저수계 흡수제에서의 이산화탄소 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;You, Jong-Kyun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this work, N-methyl-2-pyrrolidone (NMP) was added into diethylenetriamine (DETA) aqueous solution for high $CO_2$ loading via phase splitting of absorbents during $CO_2$ absorption. Immiscible two phases were formed in the range of more than 30 wt% of NMP in 2 M DETA + NMP + water absorbents because of low solubility of DETA-carbamate in NMP solution. As the composition of NMP in the absorbents increased, the difference of $CO_2$ loading between each phase increased and the volume of bottom phase decreased. In $CO_2$ absorption in packed column by 2 M DETA + NMP + water absorbents, the absorption rate decreased in the range of more than 40 wt% of NMP. It is due to the increasing of mass transfer resistance in liquid film of absorbents at the high concentration of NMP. DETA + NMP + water absorbent is expected as the promising one for reducing the regeneration energy of absorbents according to volume reduction of $CO_2-rich$ phase.

Absorption of CO2 in Aqueous K2CO3 Absorbents at Pre-Combustion Condition (연소전 조건에서 탄산칼륨계 흡수제의 이산화탄소 흡수특성)

  • You, Seung-Han;Oh, Myoung-Seog;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.993-998
    • /
    • 2011
  • The absorption capacity and initial absorption rate of $CO_2$ into aqueous $K_2CO_3$ solutions were measured by using VLE(Vapor-Liquid-Equilibrium) equipment in the pre-combustion condition. Absorption experiments were conducted within the temperature range of $40{\sim}80^{\circ}C$ while increasing the $CO_2$ pressure from 0 to 50bar. The effect of $K_2CO_3$ concentration was investigated by varying in the range of 5~20%. As a results, the absorption capacity and initial absorption rate were increased with increasing $K_2CO_3$ concentration in the absorbents. Also, the initial absorption rate was highest at $40^{\circ}C$. Further more, we have studied the effect of adding piperazine and homopiperazine to $K_2CO_3$ solutions. The results showed that absorption capacity of $CO_2$ was somewhat increased by adding piperazine.

CO2 Separation Techniques Using Ionic Liquids (이온성 액체를 이용한 CO2 분리기술)

  • Cho, Min Ho;Lee, Hyunjoo;Kim, Honggon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Since carbon dioxide, $CO_2$, was revealed as a major greenhouse gas, techniques for its separation, capture, and storage have received increasing interest in recent years. Aqueous amines are the most widely accepted $CO_2$ absorbents, but they cause the problems such as high regeneration energy, thermal degradation, and loss of absorbents due to their volatility. Ionic liquids having high thermal stability, extremely low vapor pressure, and capability of selectively absorbing specific gases have been proposed as new $CO_2$ capturing solvents which may potentially replace aqueous amines. By reviewing the ionic liquids having capability to absorb $CO_2$ reported in previous papers, we seek to develop a comprehensive understanding on the factors that influence the $CO_2$ solubility in ionic liquids such as their structures, absorption temperature, pressure, water content, etc., and to estimate the potential of ionic liquids as $CO_2$ separating media.

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun;Lim, Jin Ah;Jeong, Soon Kwan;Yoon, Yeo Il;Bae, Shin Tae;Nam, Sung Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.783-787
    • /
    • 2013
  • The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Absorption Characteristics of Aqueous Sodium Glycinate Solution with Carbon Dioxide and Its Mechanistic Analysis (Sodium Glycinate 수용액의 CO$_2$ 흡수특성 및 반응 메커니즘 해석)

  • Shim, Jae-Goo;Kim, Jun-Han;Jang, Kyung-Ryong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.430-438
    • /
    • 2008
  • The experiments for separation and recovery of CO$_2$ were conducted by aqueous sodium glycinate solution, which is one of the amino acid salts, as an absorbent of CO$_2$ in this study. Absorption capacities of aqueous MEA and sodium glycinate solution according to partial pressure of CO$_2$ were evaluated by vapor-liquid equilibrium tests of 20 wt% and 30 wt% above-mentioned absorbents, respectively. In addition, the pilot scale(2 t-CO$_2$/day) experiments based on prior results were carried out. As a result, CO$_2$ removal efficiency of aqueous sodium glycinate solution was lower than that of aqueous MEA solution. This phenomenon means that CO$_2$ removal efficiency of aqueous sodium glycinate solution mainly depends on its molecular structure. Consequently, the first application of certain amino acid salt, as an absorbent of CO$_2$, to pilot plant of 2 t-CO$_2$/day scale was carried out in our country.

A Study on Carbon Dioxide Capture Performance of KOH Aqueous Solution via Chemical Absorption (화학 흡수를 이용한 KOH 수용액의 이산화탄소 포집 성능에 관한 연구)

  • Yoo, Mi-Ran;Han, Sang-Jun;Shin, Ji-Yoon;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • The present paper investigates the performance of the KOH aqueous solution as an absorbent to capture carbon dioxide ($CO_2$). The chemical absorption was carried out according to consecutive reactions that are generated in the order of $K_2CO_3$ and $KHCO_3$. The overall absorption was completed with following the physical absorption. When the absorption was conducted with the KOH as the limiting reactants in batch a reactor, $K_2CO_3$ production rate was the 1st order reaction for $OH^-$. However, $KHCO_3$ generation reaction was independent of the $CO_3^{2-}$ concentration and the rate was calculated to be $0.18gCO_2/min$ for all KOH absorbents, which is the same value of the reaction rate using $K_2CO_3$ aqueous solution as the absorbents. The overall $CO_2$ capture ratio of the 5% KOH absorbent was estimated to be 19% and the individual value in section 1 and 2 was 57 and 12%, respectively. The amount of $CO_2$ absorbed in the solution was very slightly less than the theoretical value, which was ascribed to the side reaction that produces $K_2CO_3{\cdot}KHCO_3{\cdot}1.5H_2O$ during the reaction and the consequent diminish in $CO_2$ absorption in the KOH solution.

Thermal Degradation of Aqueous MEA Solution for CO2 Absorption by Nuclear Magnetics Resonance (핵자기공명분석법을 이용한 수용성 아민 CO2 흡수제인 MEA의 열적변성 분석)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;KIM, YOUNGEUN;NAM, SUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.562-570
    • /
    • 2016
  • At the carbon dioxide capture process using the aqueous amine solution, degradation of absorbents is main factor to reducing the process performance. Also, degradation mechanism of absorbent is important for understanding the environmental risk, route of degradation products, health risk etc. In this study, the degradation products of MEA were studied to clarify mechanism in thermal degradation process. The degradation products were analyzed using a $^1H$ NMR (nuclear magnetic resonance) and $^{13}C$ NMR. The analysis methods used in this study provide guidelines that could be used to develop a degradation inhibitor of absorbent and a corrosion inhibitor.

The Effect of Functional Group Position of the Piperidine Derivatives on the CO2 Absorption Characteristics in the (H2O-Piperidine-CO2) System ((H2O-Piperidine-CO2) system에서 piperidine 유도체의 작용기 위치에 따른 이산화탄소 흡수특성 연구)

  • Choi, Jeong Ho;Yun, Soung Hee;Kim, Yeong Eun;Yoon, Yeo Il;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Absorption characteristics of 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD) and 4-methylpiperidine (4MPD) absorbents were studied by a vapor-liquid equilibrium (VLE) apparatus and a differential reaction calorimeter (DRC). Using a VLE apparatus, the $CO_2$ loading capacity of each absorbent was estimated. After reaching the absorption equilibrium, nuclear magnetic resonance spectroscopy (NMR) had been conducted to characterize the species distribution of the ($H_2O$-piperidine-$CO_2$) system. Using a DRC, the reaction of heat was confirmed in accordance with the absorption capacity. The unique characteristics of 2MPD, 3MPD and 4MPD absorbents appeared by the position of methyl group. The 2MPD possessing the methyl group at the ortho position showed its hindrance effect during the absorption process; however, piperidine derivatives possessing the meta position and para position did not show its characteristics in $H_2O$-piperidine-$CO_2$ system.