• Title/Summary/Keyword: Aquatic ecosystem

Search Result 551, Processing Time 0.029 seconds

Pharmaceuticals in Environment and Their Implication in Environmental Health (의약물질의 환경오염과 환경보건)

  • Choi, Kyung-Ho;Kim, Pan-Gyi;Park, Jeong-Im
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.433-446
    • /
    • 2009
  • Pharmaceuticals in the aquatic environment are trace contaminants of growing importance in environmental health due to their physiologically active nature. Pharmaceuticals could affect non-target species and might eventually damage sustainability of susceptible populations in the ecosystem. Potentials for health consequences among susceptible human population cannot be ruled out since long-term exposure to cocktails of pharmaceuticals, which might be present in drinking water, is possible. Selection of antibiotic resistant microorganisms is of another concern. In order to understand, and if needed, to properly address the environmental health issues of pharmaceutical residues, knowledge gaps need to be filled. Knowledge gaps exist in many important areas such as prioritization of target pharmaceuticals for further risk studies, occurrence patterns in different environments, chronic toxicities, and toxicities of pharmaceutical mixtures. Appropriate treatment technologies for drinking water and wastewater could be developed when they are deemed necessary. One of the simplest, yet most efficient measures that could be undertaken is to implement a return program for unused or expired drugs. In addition, implementation of environmental risk assessment frameworks for pharmaceuticals would make it possible to efficiently manage potential environmental health problems associated with pharmaceutical residues in the environment.

Fisheries Resources in Garolim Bay (가로림만 어업자원에 관하여)

  • HUR Sung Bum;KIM Jong Man;YOO Jae Myung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-80
    • /
    • 1984
  • Garolim Bay is not only important fishing ground but also expected area for the tidal power plant. The construction and operation of tidal power plant will make change the ecosystem of this bay. Therefore, the actual fisheries stocks should be precisely understood for the effect estimation and overall utilization of the bay after the construction of the tidal power plant. During the study period from January through December in 1981, forty-six adult fishes species, 3 species of fish egg and 25 fishes larvae species have occurred in the bay. Considering the result on monthly distribution of eggs and larvae, the inner area of the bay seems to be important as nursing ground of larvae spawned at the outside bay in winter, e. g., Ammodytes personatus, and Enedrias sp. This inner bay is also major spawning ground for many species spawning in spring and summer, e. g., Gobiidae, Konosirus punctatus, Engraulis japonica, etc. Taking into consideration the annual mean production for three years($1978{\sim}1980$), there are two major fishing seasons. The one is in May-June for Enedrias larvae stock, and the another in October-November for big eyed herring stock. For the mariculture stocks, short necked clam, oyster and laver are important species. After construction of the tidal power plant, the migratory species, i. e., larvae of Enedrias and Ammodytes personatus, Mugil cephalus, Konosirus punctatus, etc. will be directly damaged by the interuption of migration route. On the otter hand, the change of physico-chemical factors of seawater will also affect the ecosystem of the bay. Consequently, for the overall utilization of the bay after construction, the actual ecosystem including the fisheries stocks, must bs precisely revealed, and the mechanical designs, e. g., sluice position and its demension, should be also considered with these biological characters of the bay.

  • PDF

Effects of Debris Barrier on Community Structure and Functional Feeding Groups of the Benthic Macroinvertebrate (사방공작물의 시공이 저서성대형무척추동물의 군집구조 및 섭식기능군에 미치는 영향)

  • Seo, Jun-Pyo;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • This study was conducted to search the effects of debris barrier on the benthic macroinvertebrate. Gimcheon was selected as the survey site as it has relatively stable ecosystem with constantly running water. The survey was conducted 6 times before and after the construction of debris barrier from February in 2009 to October in 2010. In the first survey before construction, the identified species were 36 species belonged to 22 families, 9 order, 4 class, and 4 phylum. The figure slightly decreased to 30 species belonged to 18 families, 7 order, 2 class, and 2 phylum in the sixth survey after construction. Before construction, occupation ratio of EPT taxa was showed in the following order: Ephemeroptera (50.0%, 85.0%), Trichoptera (35.3%, 10.0%), and Plecopteran (14.8%, 5.0%). After construction, it was showed in the following order: Trichoptera (50.3%, 68.0%), Ephemeroptera (42.1%, 29.4%), and Plecopteran (7.5%, 2.7%). Ephemeroptera was the highest before construction. Trichoptera increased rapidly after construction. The Diversity, Richness, Evenness, and Dominance indices were all turned low in the second survey right after the construction. However, each index tended to increase with the course of time. In Functional Feeding Groups, GC type was the highest of 60.7% before construction. After construction, SC(53.1%) and FC(35.4%) increased rapidly and they became stabilized since the third survey. The result of this study reveals that debris barrier greatly affects the Aquatic Ecosystem right after its construction, but the system becomes stable and returns to normal with the course of time (about 18 months). Therefore, the study considering various influence factors such as time is required to recover completely through further long-term monitoring.

Sampling and Extraction Method for Environmental DNA (eDNA) in Freshwater Ecosystems (수생태계의 환경유전자(environmental DNA: eDNA) 채집 및 추출기술)

  • Kim, Keonhee;Ryu, Jeha;Hwang, Soon-jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.170-189
    • /
    • 2021
  • Environmental DNA (eDNA) is a genetic material derived from organisms in various environments (water, soil, and air). eDNA has many advantages, such as high sensitivity, short investigation time, investigation safety, and accurate species identification. For this reason, it is used in various fields, such as biological monitoring and searching for harmful and endangered organisms. To collect eDNA from a freshwater ecosystem, it is necessary to consider the target organism and gene and a wide variety of items, such as on-site filtration and eDNA preservation methods. In particular, the method of collecting eDNA from the environment is directly related to the eDNA concentration, and when collecting eDNA using an appropriate collection method, accurate (good quality) analysis results can be obtained. In addition, in preserving and extracting eDNA collected from the freshwater ecosystem, when an accurate method is used, the concentration of eDNA distributed in the field can be accurately analyzed. Therefore, for researchers at the initial stage of eDNA research, the eDNA technology poses a difficult barrier to overcome. Thus, basic knowledge of eDNA surveys is necessary. In this study, we introduced sampling of eDNA and transport of sampled eDNA in aquatic ecosystems and extraction methods for eDNA in the laboratory. In addition, we introduced simpler and more efficient eDNA collection tools. On this basis, we hope that the eDNA technique could be more widely used to study aquatic ecosystems and help researchers who are starting to use the eDNA technique.

Domestic Test Species for Aquatic Toxicity Assessment in Korea (수생태계 독성평가에 적용 가능한 국내 시험종 선정)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • The use of aquatic species in ecotoxicity research is well established in developed countries. However, there are limitations of using the species that are not native to Korea, and the toxicity data produced by domestic test species are significantly needed to reflect the domestic situation. The purpose of this study was to investigate the domestic species that can be applicable for the aquatic toxicity assessment in Korea. Aquatic toxicity data were collected in the framework of the project 'Development of integrated methodology for evaluation of water environment' to obtain a range of test species used for aquatic toxicity assessment internationally. The test species collected were evaluated in terms of domestic distribution based on the reliable references and the advices of experts. We figured out the 71 test species native to Korea. They included 7 fish, 26 invertebrates (2 annelids, 2 bryozoa, 13 crustaceans, 3 insects, 4 mollusc, 1 platyhelminth, and 1 protozoan), 26 plants (9 diatoms, 14 green algae, 3 macrophytes), and 12 others (2 amphibians, 3 bacteria, 6 blue-green algae, and 1 fungus). The result of this study should be a very useful information for ecotoxicity assessment in aquatic ecosystem, especially in choosing the test species applicable for the ecotoxicity in Korea hereafter.

Future Direction of Water Quality Standards in Korea (우리나라 물환경 기준의 개선방향)

  • Lee, Jae-Kwan;Cho, Soon;Chung, Il-Rok;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.737-747
    • /
    • 2006
  • Ministry of Environment (MOE) of Korea has been implementing the water quality management policy to focus on the control of organic matters (BOD and COD) for 28 years since 1978 when the water quality standards had been established. However, the government and the public have begun to recognize the necessity of creating the best water environment for people and aquatic life, and also formulating the various measures of water pollution, Consequently, MOE of Korea is establishing the basic plan of water environment management, with the vision of "Clean Water, Eco River 2015." The major targets of water environment management plan are to maintain ecosystem health and to protect water quality from various hazardous substances in water bodies. In order to achieve the major targets, it is essential to amend the water quality standards, which bring about the systematic management of various pollutants and healthy ecosystem. Introduction of the new techniques of water environment assessment is also prerequisite to maintain sustainable water environment. These can be accomplished under the consideration of following suggestions in environmental quality standards. First, several criteria should be complemented in water quality standards; they include the improvement of the current water quality classification system, the strengthening and supplement of relevant parameters considering human health in the standards, the introduction of biotic indices, and management standards on eutrophication. Secondly, it should be considered to introduce the biological water quality standards using biotic indices and the management standards for sediments. Lastly, it needs to introduce or develop an ecological status classification which could be used in the assessment of the water environment as a whole.

Physical Geographical Characteristics of Natural Wetlands on the Downstream Reach of Nakdong River (낙동강 하류 연안 자연습지의 자연지리적 특성)

  • Son, Myoung-Won;Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.1
    • /
    • pp.66-76
    • /
    • 2003
  • Wetland is the ecotone between aquatic ecosystem and land ecosystem, and is much valuable in terms of ecology and economic. The stream wetland among inland fresh wetlands occupies the largest area but has been recognized as only a channel not a habitat. The purposes of this paper are to consider the characteristics of natural wetlands formed in the tributary flowing into the downstream reach of Nakdong River and to find its optimal management policy. Natural wetlands in the middle-size streams (2nd${\sim}$3rd order) are large marshlands, and were formed at the places from the mainstream away, because natural wetlands were formed in the reach of longitudinal profiles during the last glacial and the post-glacial period meet in disharmony. In order to conserve these natural wetlands effectively, we should compile the inventories of wetlands and make precise distribution maps. And we should do 'reverse-reclamation' which means the alteration of some farmlands reclaimed from natural wetland into natural wetland ecosystem, and develop the place or the space for wildlife education and ecotourism.

  • PDF

Effects of Internal Waves on Dynamics of Hypoxic Waters in Lake Biwa (일본 비와호의 빈산소 수체 거동에 미치는 내부파의 영향)

  • Kitazawa, Daisuke;Kumagai, Michio;Hasegawa, Naoko
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.30-42
    • /
    • 2010
  • The effects of internal waves on dynamics of hypoxic waters were investigated by numerical simulation by means of a hydrostatic-ecosystem coupled numerical model for Lake Biwa. The numerical model consists of hydrostatic and ecosystem submodels. Numerical simulation was carried out for a period during April 2007 and March 2008, after preliminary numerical simulation for three years. As a result, the numerical model could capture the vertical profiles of the observed water quality. During September 30 and October 21 in 2007, the major internal waves were Kelvin and Poincare waves, the periods of which were 1.63 or 1.77 days and 0.48 days, respectively. Hypoxic waters appeared in bottom boundary layer around October and were still when thermocline locates in upper layer. During late autumn and winter seasons, differences in density between upper and lower layers were reduced and the amplitude of internal waves increased. Hypoxic waters began to move under the effects of internal waves. Movement of hypoxic waters will diminish the habitat for aquatic organisms in deeper waters.

Chronic Toxicities of Effluents from Dye Industry using Daphnia magna (물벼룩을 이용한 일부 염색폐수의 만성 수질독성 특성 연구)

  • Kim Younghee;Lee Minjung;Eo Soomi;Yoo Namjong;Lee Hongkeun;Choi Kyungho
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.146-151
    • /
    • 2005
  • Recent studies indicated the utility of whole effluent assessment as a measure to control discharge of toxic effluents to receiving water in Korea. However, most studies have been focussed on acute lethal effects of toxic wastewater with little consideration of chronic sublethal impacts which are of growing concern in protecting aquatic ecosystem. We conducted acute and chronic toxicity tests with effluents discharged from five different dyeing plants in Gyeong-gi province using a marine bacterium Vibrio fischeri and a freshwater macroinvertebrate Daphnia magna to demonstrate the importance of assessing chronic sublethal effects. Various levels of acute and chronic toxicities were observed in many samples tested in this study. In 21-d chronic toxicity tests using D. magna all samples showed effects on reproduction and growth. Notable mortalities were also noted in three out of five effluents. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from two out of five plants and acute daphnid toxicity was observed in only one effluent. The result of this study clearly suggests chronic toxicity tests are more suitable to assess biological effects of effluents because it was shown from this study that even an effluent with no acute toxicity could cause chronically lethal and/or sublethal adverse effects on aquatic biota which may affect the population dynamics in aquatic ecosystem.

Gametogenic Cycle by Quantitative Statistical Analysis and the Biological Minimum Size in Protothaca (Notochione) jedoensis (Bivalvia: Veneridae) in Western Korea

  • Park, Kwan-Ha;Chung, Ee-Yung;Lee, Chang-Hoon;Kim, Sung-Han;Kim, Sung-Yeon;Seo, Won-Jae;Ryu, Dong-Ki
    • The Korean Journal of Malacology
    • /
    • v.27 no.3
    • /
    • pp.261-271
    • /
    • 2011
  • The gametogenic cycle, the spawning season and the biological minimum sizes in female and male Protothaca (Notochione) jedoensis were investigated by quantitative statistical analysis. In females, monthly changes in the percents of the follicle areas to the ovarian tissue areas and the percents of the oocyte areas to the ovarian tissue areas increased in February and reached the maximum in April, and then gradually decreased from May to July, with the spawning peak between June and July. In males, monthly changes in the percents of the testicular tissue areas to total tissue areas and the percents of the spermatogenic stage areas to the testicular tissue areas increased in February and reached the maximum in April, and then showed a rapid decrease from May to July. From these data, it is apparent that the number of spawning seasons in female and male P. (N.) jedoensis occurred once a year, from May to July. Therefore, P. (N.) jedoensis in both sexes showed a unimodal gametogenic cycle during the year. Compared the gametogenic cycle by quantitative statistical analysis in 2007 with the previous qualitative results of this species, the results of the gametogenic cycle calculated by quantitative statistical analysis showed some differentiations in the spawning seasons evaluated by the gonad index by qualitative histological analysis. The intervals of the beginning of two spawning seasons showed one month between the results of quantitative and qualitative analyses. The biological minimum sizes (considering to 50% of group sexual maturity) in female and male clams by quantitative analysis of this species are 32.01 mm in shell length in females and 30.58 mm in males, respectively. According to the mean shell length fitted to von Bertalanffy's equation, 30.58 and 32.01 mm in shell length were considered to be two years old. Therefore, we assume that both sexes of this population begin reproduction from two years of age.