Chronic Toxicities of Effluents from Dye Industry using Daphnia magna

물벼룩을 이용한 일부 염색폐수의 만성 수질독성 특성 연구

  • Kim Younghee (Department of Environmental Health, Graduate School of Public Health, Seoul National University) ;
  • Lee Minjung (Department of Environmental Health, Graduate School of Public Health, Seoul National University) ;
  • Eo Soomi (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Yoo Namjong (Ilshin Environmental Engineering Co., Ltd) ;
  • Lee Hongkeun (Department of Environmental Health, Graduate School of Public Health, Seoul National University) ;
  • Choi Kyungho (Department of Environmental Health, Graduate School of Public Health, Seoul National University)
  • 김영희 (서울대학교 보건대학원 환경보건학과) ;
  • 이민정 (서울대학교 보건대학원 환경보건학과) ;
  • 어수미 (서울시 보건환경연구원) ;
  • 유남종 (㈜일신종합환경) ;
  • 이홍근 (서울대학교 보건대학원 환경보건학과) ;
  • 최경호 (서울대학교 보건대학원 환경보건학과)
  • Published : 2005.06.01

Abstract

Recent studies indicated the utility of whole effluent assessment as a measure to control discharge of toxic effluents to receiving water in Korea. However, most studies have been focussed on acute lethal effects of toxic wastewater with little consideration of chronic sublethal impacts which are of growing concern in protecting aquatic ecosystem. We conducted acute and chronic toxicity tests with effluents discharged from five different dyeing plants in Gyeong-gi province using a marine bacterium Vibrio fischeri and a freshwater macroinvertebrate Daphnia magna to demonstrate the importance of assessing chronic sublethal effects. Various levels of acute and chronic toxicities were observed in many samples tested in this study. In 21-d chronic toxicity tests using D. magna all samples showed effects on reproduction and growth. Notable mortalities were also noted in three out of five effluents. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from two out of five plants and acute daphnid toxicity was observed in only one effluent. The result of this study clearly suggests chronic toxicity tests are more suitable to assess biological effects of effluents because it was shown from this study that even an effluent with no acute toxicity could cause chronically lethal and/or sublethal adverse effects on aquatic biota which may affect the population dynamics in aquatic ecosystem.

본 연구를 통한 결론은 다음과 같다. 5개의 염색폐수배출업소에서 각각 3회씩 채취한 최종 방류수를 대상으로 한 생물독성시험 결과 미생물독성시험에서는 B시료와 E시료에서 독성이 관찰되었고 급성 물벼룩시험에서는 반수치사농도가 C시료에서만 관찰되어 염색폐수의 독성이 시험 생물종별로 다르게 나타날 수 있음을 제시하였다. 동일 생물종을 대상으로 실시한 급성 및 만성시험에서는 급성반수치사가 5개 방류수 중 C시료에서만 비교적 낮은 농도에서 관찰이 된 것에 비해 만성반수치사는 3개 방류수에서 나타났고 $EC_{50}$도 급성영향의 $1/2\~1/5$ 수준에서 결정되었다. 특히 만성노출에 의한 생식 및 성장에 미치는 영향은 치사에 미치는 영향농도보다 더 낮은 농도에서 나타나는 경향을 보이고 있다 따라서 방류수가 연속적으로 수계에 배출되는 특성을 고려하면 만성노출에 의한 영향을 평가하는 것이 중요한 의미를 갖는다. 한편 염색폐수의 경우 동일업종 또는 동일한 시료에서도 독성평가방법에 따라 서로 다른 정도의 독성이 관찰되는 등 독성발현이 매우 다양하게 나타났다. 그러므로 염색폐수가 수중생태계에 미치는 영향을 정확하게 파악하고 제어하기 위해서는 물고기나 조류 등 다른 영양단계에 있는 생물종에 미치는 영향 등의 연구가 요구된다.

Keywords

References

  1. 김영희, 이민정, 이수미, 최경호, 이홍근. 2004. 염색폐수의 수질독성시험을 이용한 한국의 수질배출허용기준 평가연구. 한국환경보건학회지. 30:185-190
  2. 낙동강수질검사소. 1999. 염색폐수증의 난분해성물질 배출 특성 및 처리에 관한 연구 (I). 국립환경연구원보. 21:435-448
  3. 수질환경보전법 시행규칙, http://www.moleg.go.kr/(logged on April, 2004)
  4. 최경호. 1998. 도금공장의 폐수배출관리를 위한 생물학적 독성시험의 적용성 평가. 서울대학교 보건대학원 박사학위논문
  5. 환경부. 2003. 공장폐수의 발생과 처리. 1-7
  6. 환경부. 2002. 수질유해물질의 통합독성관리제도 도입방안 연구. 한국화학연구원부설 안전성평가 연구소. 1-25
  7. 환경부. 2003. 수질유해물질의 통합독성관리제도 도입방안 연구 (II). 한국화학연구원부설 안전성평가연구소. 43-65
  8. Bardour M, J Gerrisen, G Griffity, R Frydenborg, E McCarron, J White and M Bastian. 1996. A Frame work for biological criteria for Florida streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 15:185-211 https://doi.org/10.2307/1467948
  9. Borgert JC, TF Quill, LS Mccarty and AM Mason. 2004. Can mode of action predict mixture toxicity for risk assessment? Toxicol. Appl. Pharmacol. 201:85-96 https://doi.org/10.1016/j.taap.2004.05.005
  10. Choi K and P Meier. 2000. Implications of chemical-based effluent regulations in Assessing DNA damage in fathead minnows (Pimephales promelas) when exposed to metal plating wastewater. Bull. Environ. Contam. Toxicol. 64:716-722 https://doi.org/10.1007/s001280000062
  11. Choi K, P Meier and M Zong. 2004. Relationship of chemical- based effluent regulations of Korea to aquatic toxicities to microbes, macroinvertebrates, and fish. Bull. Environ. Contam. Toxicol. 72:1067-1074
  12. Cleuvers M. 2002. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 142:185-194 https://doi.org/10.1016/S0378-4274(03)00068-7
  13. Dutka B and K Kwan. 1981. Comparison of three microbial toxicity screening tests with the Microtox test. Bull. Environ. Contam. Toxicol. 27:753-757 https://doi.org/10.1007/BF01611091
  14. Gersich FM and DP Milazzo. 1990. Evaluation of a 14-day static renewal toxicity test with Daphnia magna straus. Arch. Environ. Contam. Toxicol. 19:72-76 https://doi.org/10.1007/BF01059814
  15. Kenaga E. 1982. Predictability of chronic toxicity from acute toxicity chemicals in fish and aquatic invertebrates. Environ. Toxicol. Chem. 1:347-358 https://doi.org/10.1897/1552-8618(1982)1[347:POCTFA]2.0.CO;2
  16. Organisation for Economic Co-operation and Development. 1998. OECD Guidelines for Testing of Chemicals (Daphnia magna Reproduction Test)
  17. US EPA. Whole Effluent Toxicity. http://cfpubl.epa.gov/ npdes/wqbasepermitting/wet.cfm? program_id=2 (logged on April, 2004)
  18. US Environmental Protection Agency. 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving waters to Freshwater and Marine Organisms. 4th ed. edited by C. I. Weber. EPA-600/4-90/027
  19. Yoder C and E Rankin. 1998. The role of biological indicators in a state water quality management process. Environ. Manit. Assess. 51:61-88 https://doi.org/10.1023/A:1005937927108