• Title/Summary/Keyword: Approximation algorithm

Search Result 980, Processing Time 0.034 seconds

Structural Optimization using Improved Higher-order Convex Approximation (개선된 고차 Convex 근사화를 이용한 구조최적설계)

  • 조효남;민대홍;김성헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.271-278
    • /
    • 2002
  • Structural optimization using improved higer-order convex approximation is proposed in this paper. The proposed method is a generalization of the convex approximation method. The order of the approximation function for each constraint is automatically adjusted in the optimization process. And also the order of each design variable is differently adjusted. This self-adjusted capability makes the approximate constraint values conservative enough to maintain the optimum design point of the approximate problem in feasible region. The efficiency of proposed algorithm, compared with conventional algorithm is successfully demonstrated in the Three-bar Truss example.

  • PDF

Orthonormalized Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm (직교설 전후방 PAST (Projection Approximation Subspace Tracking) 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.514-519
    • /
    • 2009
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimates the signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. FE-PAST (Forward-Backward PAST) is one of the results from the improvement studies. In this paper, we propose a new algorithm to improve the orthogonality of the FB-PAST (Forward-Backward PAST).

Heart Beat Interval Estimation Algorithm for Low Sampling Frequency Electrocardiogram Signal (낮은 샘플링 주파수를 가지는 심전도 신호를 이용한 심박 간격 추정 알고리즘)

  • Choi, Byunghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.898-902
    • /
    • 2018
  • A novel heart beat interval estimation algorithm is presented based on parabola approximation method. This paper presented a two-step processing scheme; a first stage is finding R-peak in the Electrocardiogram (ECG) by Shannon energy envelope estimator and a secondary stage is computing the interpolated peak location by parabola approximation. Experimental results show that the proposed algorithm performs better than with the previous method using low sampled ECG signals.

Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm for the Better Subspace Estimation Accuracy

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.25-29
    • /
    • 2008
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimatesthe signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. In this paper, we propose a new algorithm to improve the subspace estimation accuracy using a normally ordered input vector and a reversely ordered input vector simultaneously.

Data Classification Using the Robbins-Monro Stochastic Approximation Algorithm (로빈스-몬로 확률 근사 알고리즘을 이용한 데이터 분류)

  • Lee, Jae-Kook;Ko, Chun-Taek;Choi, Won-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.624-627
    • /
    • 2005
  • This paper presents a new data classification method using the Robbins Monro stochastic approximation algorithm k-nearest neighbor and distribution analysis. To cluster the data set, we decide the centroid of the test data set using k-nearest neighbor algorithm and the local area of data set. To decide each class of the data, the Robbins Monro stochastic approximation algorithm is applied to the decided local area of the data set. To evaluate the performance, the proposed classification method is compared to the conventional fuzzy c-mean method and k-nn algorithm. The simulation results show that the proposed method is more accurate than fuzzy c-mean method, k-nn algorithm and discriminant analysis algorithm.

  • PDF

Approximation ratio 2 for the Minimum Number of Steiner Points (최소 개수의 스타이너 포인트를 위한 근사 비율 2)

  • 김준모;김인범
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.387-396
    • /
    • 2003
  • This paper provides an approximation algorithm for STP-MSP(Steiner Tree Problem with minimum number of Steiner Points).Because it seems to be impossible to have a PTAS(Polynomial Time Approximation Schemes), which gives the near optimal solutions, for the problem, the algorithm of this paper is an alternative that has the approximation ratio 2 with $n^{O(1)}$ run time. The importance of this paper is the potential to solve other related unsolved problems. The idea of this paper is to distribute the error allowance over the problem instance so that we may reduce the run time to polynomial bound out of infinitely many cases. There are earlier works[1,2] that show the approximations that have practical run times with the ratio of bigger than 2, but this paper shows the existence of a poly time approximation algorithm with the ratio 2.

Improving the Training Performance of Multilayer Neural Network by Using Stochastic Approximation and Backpropagation Algorithm (확률적 근사법과 후형질과 알고리즘을 이용한 다층 신경망의 학습성능 개선)

  • 조용현;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.145-154
    • /
    • 1994
  • This paper proposes an efficient method for improving the training performance of the neural network by using a hybrid of a stochastic approximation and a backpropagation algorithm. The proposed method improves the performance of the training by appliying a global optimization method which is a hybrid of a stochastic approximation and a backpropagation algorithm. The approximate initial point for a stochastic approximation and a backpropagation algorihtm. The approximate initial point for fast global optimization is estimated first by applying the stochastic approximation, and then the backpropagation algorithm, which is the fast gradient descent method, is applied for a high speed global optimization. And further speed-up of training is made possible by adjusting the training parameters of each of the output and the hidden layer adaptively to the standard deviation of the neuron output of each layer. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to that of the backpropagation, the Baba's MROM, and the Sun's method with randomized initial point settings. The results of adaptive adjusting of the training parameters show that the proposed method further improves the convergence speed about 20% in training.

  • PDF

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

Growing Algorithm of Wavelet Neural Network (웨이블렛 신경망의 성장 알고리즘)

  • 서재용;김성주;김성현;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

The Performance Evaluation of Missile Warning Radar for GVES (지상기동 장비용 미사일 경고 레이더의 성능 평가)

  • Park, Gyu-Churl;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1333-1339
    • /
    • 2009
  • A MWR(Missile Warning Radar) of GVES(Ground Vehicle Equipment System) has to effectively decide the threat for a detected target. Linear Approximation Fitting(LAF) and Weighted Linear Approximation Fitting(WLAF) algorithm is proposed as algorithm for a threat decision method. The target is classified into a threat or non-threat using a boundary condition of the angular rate, and the boundary condition is determined using probability model simulation. This paper confirms the performance of proposed threat decision algorithm using measurement.