• Title/Summary/Keyword: Approximation Method

Search Result 2,545, Processing Time 0.028 seconds

A call admission control in ATM networks using approximation technique for QOS estimation (ATM 망에서의 통화품질 평가를 위한 근사화 기법과 이를 이용한 호 수락 제어)

  • 안동명;한덕찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2184-2196
    • /
    • 1998
  • Admission control is one of the most important congestion control mechanism to be executed at the call set up phase by regulating traffic into a network in a preventive way. An efficient QOS evaluation or bandwidth estimation method is required for call admission to be decided in real time. In this paper, we spropose a computtionally simple approximation method of estimating cell loss probability and mean cell delay for admission control of both delay sensitive and loss sensitive calls. Mixed input queueing system, where a new call combines with the existing traffic, is used as a queueing model for QOS estimation. Also traffic parameters are suggested to characterize both a new call and existing traffic. Aggregate traffic is approximated by a renewal process with these traffic parameters and then mean delay and cell loss probability are detemined using appropriate approximation formulas. The accuracy of this approximation approach is examined by comparing their results with exact analysis or simulation results of vrious mixed unput queueing systems. Based on this QOS estimation method, call admission control scheme which is traffic independent and computable in yeal time are proposed.

  • PDF

Reverberation Characterization and Suppression by Means of Low Rank Approximation (낮은 계수 근사법을 이용한 표준 잔향음 신호 획득 및 제거 기법)

  • 윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, the Low Rank Approximation (LRA) method to suppress the interference of signals from temporal fluctuations is applied. The reverberation signals and temporally fluctuating signals are separated from the measured data using the Ink. The Singular value decomposition (SVD) method is applied to extract the low rank and the temporally stable reverberation was extracted using the LRA. The reverberation suppression is performed on the LRA residual value obtained by removing the approximate reverberation signals. In overall, the method can be applied to the suppression of reververation in active sonar system as well as to the modeling of reverberation.

Design Optimization Using Two-Point Diagonal Quadratic Approximation (이점 대각 이차 근사화 기법을 적용한 최적설계)

  • Choe, Dong-Hun;Kim, Min-Su;Kim, Jong-Rip;Jeon, Jae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1423-1431
    • /
    • 2001
  • Based on the exponential intervening variable, a new two-point approximation method is presented. This introduces the shifting level into each exponential intervening variable to avoid the lack of def inition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method (함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증)

  • Kwak, Byung-Man;Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

An Approximation of the M/G/1 System with Finite Workload Capacity (부하량에 제한이 있는 M/G/1 시스템의 근사법)

  • Lee, Hyung Joong;Hur, Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.247-252
    • /
    • 2003
  • We propose an approximation of the M/G/1 system with finite workload capacity, where those customers whose admission to the system would increase the workload beyond a prespecified finite capacity limit are not accepted. Our approximation method is based on the idea that the service time of a customer in the M/G/1 system can be approximated as the sum of service times of a batch of customers in the $M^X/d/1$ system where the deterministic service time d is small enough. That is, the original service time is discretized and approximated by the batch size. We exemplified our method by obtaining the average workload of the M/M/1 system by means of the $M^X/d/1$ system, where the batch size is geometric. In addition, the approximate blocking probabilities of the M/M/1 and $M/E_k/1$ system with finite workload capacities are sought. The proposed method turns out to give a good approximation, which is compared with a simulation.

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF

Vertex selection method considering texture degradation for contour approximation (밝기 왜곡을 고려한 윤곽선 근사화용 정점 선택 방법)

  • Choi Jae Gark;Lee Si-Woong;Koh Chang-Rim;Lee Jong-Keuk
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.632-642
    • /
    • 2005
  • This paper presents a new vertex selection scheme for the polygon-based contour approximation. In the proposed method, the entire contour is partitioned into partial segments and they are approximated adaptively with variable accuracy. The approximation accuracy of each segment is controlled based on its relative significance. By computing the relative significance with the texture degradation in the approximation error region, the visual quality enhancement in the reconstructed frames can be achieved under the same amount of the contour data. For this purpose, a decision rule for $d_{max}$ is derived based on inter-region contrasts. In addition, an adaptive vertex selection method using the derived rule is proposed. Experimental results are presented to show the superiority of the proposed method over conventional methods.

HIGH ORDER IMPLICIT METHOD FOR ODES STIFF SYSTEMS

  • Vasilyeva, Tatiana;Vasilev, Eugeny
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.165-180
    • /
    • 2001
  • This paper presents a new difference scheme for numerical solution of stiff system of ODE’s. The present study is mainly motivated to develop an absolutely stable numerical method with a high order of approximation. In this work a double implicit A-stable difference scheme with the sixth order of approximation is suggested. Another purpose of this study is to introduce automatic choice of the integration step size of the difference scheme which is derived from the proposed scheme and the one step scheme of the fourth order of approximation. The algorithm was tested by means of solving the Kreiss problem and a chemical kinetics problem. The behavior of the gas explosive mixture (H₂+ O₂) in a closed space with a mobile piston is considered in test problem 2. It is our conclusion that a hydrogen-operated engine will permit to decrease the emitted levels of hazardous atmospheric pollutants.

Shape Optimization of a Micro-Static Mixer (마이크로 믹서의 형상 최적화)

  • 한석영;김성훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.166-171
    • /
    • 2004
  • In this study, shape optimization of micro-static mixer with a cantilever beam was accomplished for mixing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

  • PDF

A Closed Queueing Network Model for the Performance Evaluation of the Multi-Echelon Repair System (다단계 수리체계의 성능평가를 위한 폐쇄형 대기행렬 네트워크 모형)

  • 박찬우;김창곤;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.27-44
    • /
    • 2000
  • In this study we consider a spares provisioning problem for repairable items in which a parts inventory system is incorporated. If a machine fails, a replacement part must be obtained at the parts inventory system before the failed machine enters the repair center. The inventory policy adopted at the parts inventory system is the (S, Q) policy. Operating times of the machine before failure, ordering lead times and repair times are assumed to follow a two-stage Coxian distribution. For this system, we develop an approximation method to obtain the performance measures such as steady state probabilities of the number of machines at each station and the probability that a part will wait at the parts inventory system. For the analysis of the proposed system, we model the system as a closed queueing network and analyze it using a product-form approximation method. A recursive technique as well as an iterative procedure is used to analyze the sub-network. Numerical tests show that the approximation method provides fairly good estimation of the performance measures of interest.

  • PDF