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ABSTRACT

Admission control is one of the most important congestion control mechanism to be executed at the call set up
phase by regulating traffic into a network in a preventive way. An efficient QOS evaluation or bandwidth estimat-
ion method is required for call admission to be decided in real time.

In this paper, we propose a computationally simple approximation method of estimating cell loss probability and
mean cell delay for admission control of both delay sensitive and loss sensitive calls. Mixed input queueing sys-
tem, where a new call combines with the existing traffic, is used as a queueing model for QOS estimation. Also
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traffic parameters are suggested to characterize both a new call and existing traffic. Aggregate traffic is approxi-

mated by a renewal process with these traffic parameters and then mean delay and cell loss probability are

determined using appropriate approximation formulas.

The accuracy of this approximation approach is examined by comparing their results with exact analysis or

simulation results of various mixed input queueing systems. Based on this QOS estimation method, call admission

control scheme which is traffic independent and computable in real time are proposed.

1. Introduction

Asynchronous transfer mode (ATM) has been widely
accepted as a target technology to implement broad-
band integrated services digital network (B-ISDN) [1],
[2]. ATM provides flexibility for supporting services
each with a wide range of service requirements and
various statistical traffic behaviors. Especially, it is
expected that a large number of bursty traffic sources
(voice, interactive data, compressed video, image, etc.)
are supported in an ATM network. Statistical multi-
plexing of such traffics generated from several sour-
ces may lead to efficient bandwidth utilization and
allow more calls to be handled.

However, scvere network congestion and perfor-
mance degradation may easily occur because of the
dynamic behavior of traffic sources and the statistical
multiplexing scheme. Traffic control is hence required
to avoid the congestion and to allow for high utiliz-
ation of network resources, while guaranteeing the
quality of service (QOS) requirement for all connect-
ions. Since ATM is a connection-oriented high speed
transport technique, various levels (path level, call
level, cell level) of both preventive and reactive con-
trol methods are commonly considered suitable for an
ATM network {3],{4],[5].

Admission control is one of the most important
congestion control mechanisms to be executed at the
call set up phase by regulating the calls into a net-
work in a preventive way. When a new call arrives,
the admission control function estimates the QOS
(mean cell delay and cell loss probability, etc.) or
required resources (link bandwidth and buffer) along
the path between the source and the destination nodes.

The estimation is based on the traffic characteristics
of existing calls and a set of traffic descriptors, as
well as the required QOS specified by a new call
Admission control accepts a new call if the available
resources are able to meet the required QOS of a
new call along with those of the existing calls. Hence,
the method of evaluating the QOS performance or
estimating the required resources are the most import-
ant issues of the admission control problems still un-
der consideration. The main difficulty comes from the
lack of accurate and computationally simple analytical
models that can be used to evaluate the performance
of multiplexed traffic, consisting of many heterogen-
eous calls with a wide range of service requirements
and diverse traffic characteristics.

Various call admission control strategies have been
proposed to evaluate the QOS performance or estimate
the effective bandwidth using traffic descriptors such
as peak bit rate, average bit rate, bit rate variance or
average burst length, etc. Simple M/D/1/K model has
been proposed by [6]. In this method, a new call is
characterized by peak bit rate (wideband traffic) or
average bit rate (narrowband traffic) and the overall
aggregate traffic to the link is assumed to be Poisson
with rate equal to the sum of the peak rates or sum
of the average rate of the individual calls. This
method is simple but qu.ite inaccurate when the multi-
plexed traffic consists of bursty traffic sources.

Another approximation method, known as buffer-
less link overflow model, has been suggested. In the
bufferless model, overflow occurs whenever aggregate
traffic rate is larger than the link capacity. In [7], it
is assumed that aggregate traffic has a gaussian distr-

ibution and the mean and variance are the sums of
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the average rate and bit rate variance of individual
traffic sources respectively. Also in [8], overflow pro-
bability is determined by assuming an on-off traffic
source and finite call classes. Since the overflow
model neglects the buffering effect, overflow proba-
bility generally overestimates the actual cell loss pro-
bability in the queueing model.

There are schemes called a class related bandwidth
assignment rule. In this scheme [9], [10], effective
bandwidth estimation is obtained using simulation re-
sults or analysis, assuming an on-off arrival process
and finite call classes. And such a precomputed band-
width for homogeneous traffic is stored in a table
and used as the guidelines to decide whether to ac-
cept a call or not. Also, bandwidth estimation for
heterogeneous traffic is given by the linear sum of
the required bandwidth of an individual call class or
by the bandwidth obtained assuming that all calls are
generated by traffic sources with the largest bursti-
ness. The main disadvantage of this scheme is that
the required table size and analysis or simulation to
create the performance table are unrealistically large.
Also, it is not easy to classify the wide range of
ATM calls into finite call classes.

In [9], equivalent capacity (required bandwidth
guaranteeing the required cell loss probability) for a
single exponential on-off type traffic source is obtain-
ed using the fluid flow approximation technique. And
the equivalent capacity for multiplexed traffic is deter-
mined by the minimum bandwidth between the sum
of the individual equivalent capacity and the band-
width obtained using gaussian approximation method.
These two methods complement each other over dif-
ferent ranges of connection characteristics. For exam-
ple, the linear sum of individual capacities, as in the
STM network, substantially overestimates the required
capacity unless the equivalent capacities of individual
connections are close to their mean rates, ie., low
burstiness or number of connection is small. Mean-
while, the gaussian approximation method performs

well as the number of connection is increased.
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Most of the suggested admission control schemes
have the disadvantage of the QOS or required band-
width estimation being based on a particular arrival
process (e.g. interrupted poisson process or on-off pro-
cess). It may be very difficult or inaccurate to fit the
new call with a wide range of traffic characteristics
to a particular arrival model.

In this paper, a computationally simple approxim-
ation method of estimating cell delay and cell loss
probability for admission control of both delay sen-
sitive and loss sensitive calls is proposed. Also, since
this method does not assume any particular arrival
process, it can be applied for admission control of
various types of calls.

The rest of the paper is organized as follows.
Mixed input queueing models suitable for admission
control and traffic characterization of new and exist-
ing calls are described in section II. In section III,
we propose an approximation method to estimate the
mean cell delay and cell loss probability. Section IV
describes the implementation of admission control
schemes using this approximation method. Section V
investigates the accuracy of the approximation method
by comparing with some exact analysis or simulation
results and investigates the bursty call effect on the
performance of existing calls. Section VI presents the

summary and conclusion.

II. Queueing Model and Characterization
of Traffic

We concentrate on the output queueing ATM switch
and consider the case where a number of calls are
statistically multiplexed onto the output ports (see
Fig. 1). A mixed input queueing model, where a new
call joins the calls which already exist on the output
transmission link, seems appropriate for describing the
queueing performance effect of adding a new call to
the existing calls and deciding the call admission.

Existing traffic will consist of many calls with dif-
ferent bandwidth and statistical nature (CBR, VBR,

on-off, etc). In general, it is very difficult to charac-
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Fig. 1 Mixed input queueing mode! for admission control

terize the existing traffic which is the superposition
of many heterogeneous traffics. Also, such a superpos-
ition (especially the superposition of a bursty source)
induces the significant correlation among successive
interarrival times. Therefore, to represent the various
statistical natures of existing traffic, it seems reason-
able to use a general point process instead of assum-
ing a particular arrival process such as markov modu-
lated poisson process (MMPP) [10], [11], poisson
cluster process (PCP) [12].

In an ATM network, it is expected that many
calls are bursty and has some correlation between
successive interarrival times. Typically, a bursty source
has been modeled by an on-off process or interrupted
poisson process (IPP). This simple model captures the
basic idea that a bursty source may be either active
or inactive and can be fully characterized with a few
parameters. However, IPP or on-off process are renew-
al processes, so there is no correlation between suc-
cessive interarrival times. Also, the exponential period
of on-off time may be severe restrictive to use as a
model of bursty traffic source with a wide range of
traffic characteristics. Due to such limitations in using
the above bursty traffic models, we use a cluster
point process as a bursty traffic model [15]. When a
new call is bursty, our queueing model can be re-
presented as point process + cluster point process/D/f1
queue. This model, though general, seems impossible
to be solved analytically. To use an approximation
method it is required to characterize both the point
process (existing calls) and cluster point process (new
call) by a few well-defined parameters that signific-
antly affect the QOS performance.

The rate and variability of offered traffic is com-

monly recognized as the most important parameters
that determine the queueing performance. The precise
relationship between variability and performance is
very difficult to represent analytically. But generally,
more variability corresponds to longer delay and lar-
ger packet loss.

The variability of an interarrival time can be parti-
ally characterized by its variance or coefficient of
variation. The mean arrival rate and coefficient of

variation of interarrival time Xn are defined by

A=E[Xxn]™! )
_ var(X,)
= B X, @

Another important characteristic that significantly
affects the QOS performance is the correlation between
consecutive interarrival times, which so far has rece-
ived little attention. Also, such a correlation can be
partially characterized by the coefficient of variation
of the cumulative interarrival time defined by

¢ = jm M - cwxn)[1‘+2 lim ﬁ (1=%)~].

k
3

where CV( - x) represents the coefficient of variation
and 7, is the correlation coefficient of interval with
lag i For a renewal point process Cg’ is equal to
C4% but for a correlated point process C,° is larger
than Cg%. We choose the above 3 parameters (A,
Cst, Ca?) to represent both the existing traffic and
a new call and QOS is estimated based on these
parameters.

In order to investigate the effect of parameters
Cs® and C,% on the queueing performance, cell loss
probability and mean cell delay for some arrival pro-
cesses are compared in Fig. 2. Fig. 2-(a) represents
the delay and loss characteristics of 3 different arrival
processes - Poisson, IPP and Erlang arrival process

respectively, when the mean service time of exponent-
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ial server is normalized by 1. Since all these arrival
processes are renewal processes, there is no correlation
between interarrival times but the coefficient of vari-
ation of interarrival time is different. We can see that
the mean delay and loss probability are very sensit-

ive to the coefficient of variation of interarrival time

C 52. Fig. 2-(b) shows the effect of the coefficient of

variation of cumulative interval C,° In Fig. 2-(b),
the delay and loss probabilities of first order expon-
ential autoregressive process are compared with the
Poisson process using simulation. First order exponent-

ial AR process {Xn} is defined by
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Fig. 2 Delay and loss characteristics for various arrival
process to investigate the cffect of parameter C o
and C42. (a) Poisson, IPP and 8 stage Erlang ar-

rival process (b) Poisson and exponential AR with
correlation coefficient 0.6'
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Ay n={
Xn = , 4)
aX, +UA, nz2l

where An is iid. exponential distribution with rate A
and U, is also iid Bernoulli process with probabi-
lity (1-a). Cell interarrival time distribution of expon-
ential autoregressive process is cxponential with rate
A same as the Poisson arrival process but it has cor-
relation between intervals. Correlation coefficient of

X, and X, , is given by

k

cp = % )

For the exponential AR process, though the varia-
tion of interarrival time itself is low, performance
severely degrades due to the correlation between inter-

vals. From Fig. 2, we can see that 3 parameters (A,
C4, Ca%) play critical roles in determining the

queueing performance.

II1. Computation Procedure

In this section, we present the approximation
method of computing the mean cell delay and cell
loss probability of point process + (cluster) point
process/D/1 queue described in II. The approximation
procedures are as follows. (1) characterize the aggre-
gate traffic by its traffic descriptor from the traffic
descriptors of existing traffic and a new call, (2) ap-
proximate the superposed traffic by a renewal process
(3) determine the delay and loss probability of GI/D/
1/K queue using appropriate approximation formula.
The approximation method used in this paper is based
on the renewal approximation method developed by
[16], [17], [18]. and the maximum entropy analysis of
the GI/G/1 queue [19], [20]. The renewal approximat-
ion approach was previously applied by [15}, {21] to
analyze the voice packet multiplexer and proved that

this method is quite accurate.
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1. Determining the traffic descriptors of su-
perposed traffic

Let Np(# and Ng(#) be the point process indic-

ating the existing traffic and a new call. And their

traffic is characterized by traffic descriptors (Ag,
Cse®, Cag?) and (Ap, Csp®, Cag’) respectively. We
want to characterize the aggregate traffic N4(#) by
its traffic descriptors (A4, Cga?, Cau®) using the tr-
affic descriptors of Ny(£) and Ng(#). Obviously, ar-

rival rate A, of aggregate traffic satisfy

Csq? can be determined as follows. Interarrival
time distribution of superposed traffic F (2 is related
with the distribution of component process F () and

Fi(?) as [18]

_Ads

+ Fg(d ftm FE(u)du}

Fa(d) =1 { ol flm Fol20) du

)]

Using this relation, we can compute the Cg,°
However, we know only the first and second moment
of interarrival time of component processes (Ap, Csp?)
and (A5, Csp?). Whitt suggests a method called stat-

ionary interval method [16] which calculates the higher
moment by fitting a hyperexponential or hypoexpon-
ential distribution to their first and second moments.
When the coefficient of variation is greater than 1
(higher variability), we let the interval distribution be
hyperexponential. The pdf, mean and coefficient of

variation are given by

ayt

Ax) = Dlale_a't+l7202€7 .
¢ = par '+ past, ®

Ct = 2u N prar i+ paes D) = 1.

Under the assumption of balanced means (p)/a, =
p2/az), p1, p2, @i and @z can be determined from given
U and C.

P = ’21'(11\/ gzzli ) a2 =2pon . O

If the coefficient of variation is less than 1 (low

variability), we can use hypoexponential distribution.
It has density

f)=pge " P x4 (10)

The two parameters B and d can be determined
from given i and C*
B=AC"!, d=1"'(1-0. (11

Using these distribution fitting, we can compute the
Csa® from eq.(7). When both Cgp? and Cg,’ are

greater than 1, (Cg,? is given by

Cip = 246Ap(Ag +AB){‘2; T&%ﬁ;}_'l' (12)

By substituting the traffic parameters into eq (12),

Csa® can be represented as

1= (Varh— Verk)®

= 5 , (13
= TH T A — ek =2V s vy
where Vg, Vi, rg and »p are defined by

_ Cis-1 _C&—1 _ A _ s
B C?s'n’{"l . Ve= C?qp+1 » ¥Yp= AA . YE= N . (14)

When Cgqpr?<1 and Cgq’ =1, we use hyperexpon-
ential distribution for a new call and hypoexponential
distribution for the existing traffic. After computation,

we obtain
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—a.d

Y, : pxe
Ciy = 2A5Ap(Ag +Ap) Z; [m

+ 2 e a7y (15)

7

—‘55* (1—e “)~ade ""'d)}—- 1.

:

By substituting the traffic parameters into eq (15)

and using the fact that a;d << 1 in the considering

range, Cssq’ can be represented as

. 2(Cip + 1) Cop(ryCsp + 710)
275 C% + vp(Cip + D2rpCap + 78)

Cia = ~1. (16)

Also, using the same procedure, we can determine
the Csa’ when (Cg’ 21, Cop®<1) and (CgP<1,
Css® 2D

C AA“) can be determined as follows. For a renewal

counting process, index of dispersion for counts and
index of dispersion for interval are asymptotically
equal [22], that is

T var{N(#H))
Jm kE.[Xn]Q = ‘!123 tMN(t)] . (17)

By applying this asymptotic property for the super-
posed point process Nq(f) (see also asymptotic
method in [16]), we have

s 1 . var(Na(8)

=3 11_}3.} ; . (18)

Since N,(f) is the sum of two independent point
processes N (8, Ny(£) and also Cup’ and Cgopf

each satisfy the relation of eq(18), we have
Cia = reChp +7r5Chs. 19

Hence from eq(6), (13) or (16), and (19), we can

compute the traffic descriptor of superposed process
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of existing traffic and new call.

The superposed point process N,({f) to the queue
can be replaced to the GI/G/1 queue by the appro-
ximating renewal process. And hence we can use the
approximation formula for GI/Gfl queue. We use
hybrid renewal approximation method proposed by
[17]. This method equates the coefficient of variation

of renewal interval (',° to the convex combination

of Cys’ and Can°. That is
Chr=00=w Ciy +wCha, (20)
where weighting function w is given by

we=[1+6(1-0*n']"", @
and n* is given by

g R @)
A4

2. Mean delay and loss probability compu-
tation

The mean number of cells in the infinite buffer

GI/G/1 system can be computed using the approximat-

ion formula [17}:

2 - - .
N=p+ 5= (Ci+ Ch)e(Cly, Ch, 0). 23

In here, C;* and C,° are the coefficient of variation
of arrival process and service process respectively. »
is the traffic intensity to the queue and g(C,%, C5,

¥) is given by

o 2= -Ci)* 1
& Cip, Ciy, )= exp[_ 3p CL+ Y ](’"Sl . @4
Ch—1

exp[—(l—p)m‘

]c%,21

This approximation formula is basically an inter-
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polation between known results for special systems
and several results under heavy traffic conditions and
has been validated by extensive simulations for a wide
range of arrival and service process combinations.
The occupancy distribution, pr{N =n}, of infinite
capacity GI/G/1 queue can be determined by choos-
ing a distribution with maximum entropy, satisfying
mean queue size constraint determined in eq. (23) and
other given information. i.e., maximize the system’s

entropy function [21]

H(p) = = 21 p(n) In pn) 25)
subject to the constraints

2 Mm=1, HO=1-p, X np(m=0N. @6

The maximum entropy solution can be computed
using the Lagrange method of undetermined multipl-

iers and this is given by

[ 1—0, n=0
() {(l—p)gx”, n>1"’ @n

where g and x can be determined from the constra-
ints in eq. (26)

x=-————1;—p— (28)
__.___LZ___.__ 29
T T N=p-0 @

The maximum entropy solution is identical to the
queue size distribution for an M/M/1 queue and it is
known that for M/G/1 queue, maximum entropy solut-
ion becomes exact when the underlying pdf of the
service time is characterized by the generalized expon-
ential model. Also for G/M/1 queue, maximum ent-
ropy solution is identical to the exact solution based
on an embedded MC at the arrival instant, with x
equal to the probability of an arrival finding a busy

server [13).

Given the distribution pr{N =i} of GI/G/1 queue,
the queue size distribution, Pr{Nk=n}, of the corre-
sponding finite buffer system GI/G/1/K is approximat-
ed by [23]

PANg=n} = %{L%z—;}l— (30)

From eq (30), we can determine the mean cell
delay and cell loss probability of GI/G/1/K queue.
The cell loss probability is given by

o (%A)K
P = PriNe= K0 =2 o 3D
N

The mean cell delay can be readily obtained by the
use of Little’s formula; that is

’g nPr{Ny =n}

D=0

(32)

where A,(1— P, ) is the mean arrival rate of cells

actually entering the system. After some computation,

mean cell delay is given by

. L 2 A ) FON
")

IV. Call Admission Control Scheme

This section describes a call admission control
scheme based on the approximation method developed

in III. The call admission control function maintains
the link status vector (Ag, Cep® Caz’) that charac-
terizes the currently connected calls to this link. When
a new call with traffic parameter (Ay, Csp’, Can®)
requests connection, the call admission control calcul-

ates the traffic parameters (A4, Cgq’ Caq’) that
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represent the link status after the requested call is
added to the existing calls according to eq. (6), (13)
or (16) and (19). And then call admission control

evaluates the mean delay D) and cell loss probability
P, using q.(20), (31) and compares with the delay
and loss requirement €, and ;. A new call is

accepted if and only if
D < Q[) and Pl_ < QL (34)

If admission control accepts a new call, the link
status vector (Ap, Cez, Cag’) is updated by (A,,
Conl, Caq?). When a new call with parameter (A,
Css’, Cay’) is released, the admission control upda-
tes the current link status vector (A, Cu’, Cap®)

according to the following equations.

When both Cgp? and Cg’ are greater than 1,

2

Csg <

<n+vwm+Af; Jﬁ - ryCle+ 1) u“”wﬂ Virh ‘}
G [, . Car 1

A Vardd = g+ Al il s 1 (v nlv,m. —C;;H}

(36)

When Cg’ <1 and Cgl =1,

Céﬁ N

rd (1= i G+ 1)) — J#’{l—m(d,ﬂ)) —2rurid G H)[ CZ';’I Tu 1}

T +1
27,,‘” c;h+1 1]

(37N

Cag’ is updated by

C%E - (ng '; Yn CE{B) (38)
E
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Since the computationally simple approximation
formula is used for QOS estimation, the admission
control function can be carried out in real time. In
addition, it can be applied to the admission decision
for both delay sensitive and loss sensitive calls. Also,

it is independent of the actual cell arrival process.

V. Numerical Results

In this section, the accuracy of the suggested ap-
proximation method is examined by comparing to the
exact analysis or simulation results of various mixed
input queueing models. We choose 4 mixed input
queueing models - IPP -+ Poisson/D/1/K, IPP+MMPP/
D//K, H:+H:/D/1l/Kand ON--OFF + EXP. AR/D/1/K
queue. IPP, H, (2 stage hyper exponential) and on-off
processes can be interpreted as representations of new
call with bursty tratfic model and Poisson, MMPP,
H: and EXP. AR as possible models of existing
traffic. Mean delay and cell loss probability using ap-
proximation method described in Il are compared to
those obtained by cxact anmalysis using Neut’s matrix
geometric solution method {24], [25] and simulation
results.

The computation results are summarized in Table
1, 2, 3, 4 and Fig. 3, 4, 5 and 6. Here, the average
queueing delay is shown by the nommalized value
i.e., one unit time corresponds to the cell transmis-
sion time.

Fig. 3 and Table ! show the cell loss probability
and average queueing delay of IPP + Poisson/Df1 queue
obtained using exact analysis and approximation
method as a function of mean offered load of exist-
ing traffic for two cases of IPP traffic, where the
peak rate of IPP is 10Mbps and 30Mbps. The aver-
age on time and off time are 100 and 1000, respect-
ively, for both cases. Fig. 4 and Table 2 show the
cell loss probability and average queueing delay of
IPP + MMPP/D/1 queue vs mean offered load of MMPP
traffic. Two state MMPP model is used and its mean
time on state 1 and 2 are 10° and 10" respectively.

The ratio of arrival rate at state 1 and state 2 are
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than the Poisson the mean delay and cell loss are

larger than those of IPP+ Poisson/D/1 case.
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Fig. 3 Delay and Loss Probabilities of IPP+Poisson/Df1/K
Queue obtained using approximation and exact
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time = 100 msec and mean off tim¢ = 300 msec
(b) peak rate of IPP =

mean aelay

o
s
a
i
1
5
4
3
2
1

0

!
A i s
£o4 1
7
Wi "
“)‘,}’ 5
&
rbd
bylfer 3 e 30 i
037 8303 6ras 0ear 0eas 1
tood of Poissan trott.

1BB cote 20104celis /seca ) OMbps
101

10 msec and mean off time = 30 msec

Table 1. Delay and Loss Probabilitics of IPP+ Poisson/
D/1/K Queue obtained using approximation and
exact analysis (a) peak rate of IPP = 1 Mbps,
mean on time = 100 msec and mean off time
= 300 msec (b) peak rate of IPP =

mean on time = 10 msec and mean off time
30 msec
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0.4 0.6 0.8
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Fig. 4 Delay and Loss Probabilities of IPP+MMPP/D/1/K
Queue obtained using approximation and exact
analysis (a) peak rate of IPP = 10Mbps, mean on
time = 10 mscc and mean off time = 30 msec (b)
peak ratc of IPP = 1 Mbps mcan on time = 100
msec and mean off time = 300 msec

Table 2. Delay and Loss Probabilitics of IPP+MMPP/D/f
1/K Queuc obtained using approximation and
exact analysis (a) peak ratc of IPP = 10Mbps,
mean on time = 10 msec and mean off time =
30 msce (b) peak rate of IPP = 1 Mbps mean
on time = 100 msec and mecan off time = 300
msec

toad of mean delay loss prob.
poisson traffic | g5 [ o5 | 08 | 04 | 06 | 08

exact analysis |1.206|1.920(6.469|1.4c-11]| 4.4e-6 | 2.3e-3
approximation | 1.485(2.51317.143{1.2e-10{ 1.9¢-5 | 5.0e-2

(@)

load of mean delay loss prob.
poisson traffic | 93 | 05 | 08 | 04 | 06 | 08

exact analysis |1.187|1.926|5.987(9.6e-13( 1.1e-6 | 1.42-3
approximation {1.255(2.13016.625|5.5¢-14| 1.4¢-7 {9.1e-4

®)

Fig. 5 and Table 3 represent the cell loss probabi-
lity and average queueing delay of H,+Ha/D/1 queue
as a function of mean offered load Ha(existing tr-
affic) for two cases of H2(new call) traffic where the

mean rate and coefficient of variation are (10Mbps,
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10) and (20Mbps, 20). Fig. 6 and Table 4 show the

comparisons with simulation results of ON—OFF+

Exp. AR/D/1 queue when the correlation coefficient

with lag & is 0.4". As we can see in the above com-

putation results, the suggested approximation method

for QOS estimation method has a reasonably good

accuracy.

mean zecy

meon rote'] (Hoells/sec =5Mbps

(a) )

Fig. 5 Delay and Loss Probabilitics of H:-+H:/D/1/K Queuc

obtained using approximation and cxact analysis (a)
mean rate of Hao(new call) = 5 Mbps (b) mean ratc
of Hz(new call) = 20 Mbps

Table 3. Declay and Loss Probabilities of H,+H:/D/1/K

Queue obtained using approximation and exact
analysis. (a) when mean rate of Hz(new call) =
SMbps (b) when mean ratc of Hi(new call) =
10Mbps.

(a) (b)

Fig. 6 Delay and Loss Probabilities of ON— OFF + Exp.
AR/D/1/K Qucue obtained using approximation
and exact analysis (a) peak rate of ON—OFF =
10Mbps mean on time = 10 msec and mean off
time = 30 mscc (b) peak ratc of ON—OFF = 1
Mbps mcan on time = 100 msec and mecan off
time = 300 mscc.

Table 4. Delay and Loss Probabilitics of ON-- OFF + Exp.
AR/D/1/K Queuc obtained using approximation
and cxact analysis (a) peak rate of ON—- OFF =
10Mbps mean on time = 10 msec and mean
off time¢ = 30 msec (b) peak ratc of ON - OFF
= 1 Mbps mecan on time = 100 msec and mcan
off time = 300 msec.

load of mean delay loss prob.

poisson traffic | 5 | o5 | 08 | 04 | 06 | 08

cxact analysis | 1.237] 2.072 |5.760| 1.5¢-9 [4.0c-6|1.3e-3
approximation | 1.437} 2.304 16.236{5.9e-11{9.1¢-7 | 8.2¢-4

approximation |1.458(3.271]13.01{3.3¢-13{1.2e-6 | 1.7e-2

(a)

toad of mean delay loss prob. @)
poisson traffic | g3 | 05 | 08 | 04 | 06 | 08
exact analysis |1.340|3.021}12.35|1.5e-14} 1.1e-6| 1.5e-3 load of mean dclay loss prob.

poisson wraffic | 65 | o5 | 08 | 04 | 06 | 08

cxact analysis [1.187]1.906| 5.987 | 1.0c-8 | 7.1e-57.1c-4
approximation | 1.255|2.130| 6.625 [4.8¢-10| 1.3e-5 | 4.6¢-4

load of
poisson traffic 021 05| 08 0.4 0.6 0.8

mean delay loss prob.

exact analysis {1.56814.396|19.40|2.34e-9|1.34e-4|8.94¢-3
approximation |1.815/4.674|20.08 | 1.42¢-6|7.75e-519.04e-3

)
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(b)

V. Conclusions

In this paper, we have investigated a call admission
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control for delay or loss sensitive calls. The traffic
parameters specified by a new call are assumed to
be average arrival rate, coefficient of variance of cell
interarrival time and coefficient of variation of cu-
mulative interarrival time. The existing calls are also
characterized by these traffic parameters. Based on
these parameters, mean cell delay and cell loss pro-
bability of superposed traffic are estimated without
any assumption on the arrival process. The accuracy
of approximation method for estimating cell loss pro-
bability and cell delay was examined by comparisons
with exact analysis and simulation results. Implement-
ation of admission control schemes was discussed
with regard to their real time evaluation of cell loss
and delay and traffic parameter update when a call is

accepted or released.
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