• Title/Summary/Keyword: Approximation Component

Search Result 106, Processing Time 0.027 seconds

Condensation of Nano-Size Polymer Aggregates by Spin Drying

  • Ishikawa, Atsushi;Kawai, Akira
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.7-10
    • /
    • 2005
  • Condensation control of nano-particles has become important in order to fabricate minute condensed structures. In this study, we focus our attention on condensation mechanism of polymer aggregates in a resist film. The polymer aggregate is structural component of a resist material which is used in lithography process. The condensation nature of polymer aggregates in the resist film surface is observed by using atomic force microscope (AFM). By using the AFM, the condensation of polymer aggregates can be observed clearly. The condensation of polymer aggregate strongly affects to precise fabrication of resist pattern below 100nm size. The interaction force among polymer aggregates can be analyzed based on Derjaguin approximation. We also discuss about condensation nature of polymer aggregates in the resist film surface with the help of micro sphere model.

  • PDF

ADS-B based Trajectory Prediction and Conflict Detection for Air Traffic Management

  • Baek, Kwang-Yul;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.377-385
    • /
    • 2012
  • The Automatic Dependent Surveillance Broadcast (ADS-B) system is a key component of CNS/ATM recommended by the International Civil Aviation Organization (ICAO) as the next generation air traffic control system. ADS-B broadcasts identification, positional data, and operation information of an aircraft to other aircraft, ground vehicles and ground stations in the nearby region. This paper explores the ADS-B based trajectory prediction and the conflict detection algorithm. The multiple-model based trajectory prediction algorithm leads accurate predicted conflict probability at a future forecast time. We propose an efficient and accurate algorithm to calculate conflict probability based on approximation of the conflict zone by a set of blocks. The performance of proposed algorithms is demonstrated by a numerical simulation of two aircraft encounter scenarios.

Removal of Halocarbonanted Volatile Organic Compounds by Adsorption Technology (흡착법을 이용한 염소계 휘발성 유기화합물의 제거)

  • 김승재;조성용;김태영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Adsorption isotherms of dichloromethane and 1, 1, 2-trichloro-1,2,2-trifluoroethane on an activated carbon pellet, Norit B4, were studied. For these chemicals, Sips equation gave the best fit for the single component adsorption isotherm. The adsorption affinity on activated carbon was greater for dichloromethane than that of 1, 1, 2-trichloro-1,2,2-trifluoroethane. An experimental and theoretical study was made for the adsorption of dichloromethane and 1, 1,2-trichloro-1,2,2-trifluoroethane in a fixed bed. Experimental results were used to examine the effect of operation variables, such as feed concentration, flow rate and bed height. Intraparticle diffusion was able to be explained by surface diffusion mechanism. An adsorption model baked on the linear driving force approximation (LDFA) was found to be applicable to fit the experimental data.

  • PDF

Optical Determination of the Heavy-hole Effective Mass of (in, Ga)As/GaAs Quantum Wells

  • Lee, Kyu-Seok;Lee, El-Hang
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.13-24
    • /
    • 1996
  • We determine the reduced mass of heavy-hole exciton and the heavy-hole in-plane mass for a series of (In, Ga)As/GaAs strained layer quantum wells using the magnetolu-minescence measurements of the exciton ground state and the modified perturbation approach. In the theoretical calculation of the magnetoexciton ground state, the exciton reduced mass is considered as an adjustable parameter, and two variation parameters are used in the unperturbed wave function which is expressed in terms of subband wave functions in the growth axis and the product of two-dimensional hydrogen and oscillator like wave functions for the in-plane component. We take into account the energy dependence of transverse and in-plane electron masses in the twoband effective mass approximation. The electron effective mass decreases as either quantum-well width or indium composition increases, and so does the heavy-hole in-plane mass down to the value at the decoupling limit ($m_{hh,\;{\rho}}=0.11m_0$).

  • PDF

POSITION CONTROL OF D.C. SERVO MOTOR USING VARIABLE STRUCTURE WITH SLIDING MODE (슬라이딩 모드에 의한 직류 서브 모터의 위치 제어)

  • Lee, Yoon-Jong;Yuhn, Hyeong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.552-554
    • /
    • 1987
  • A design principles of discontinuous control are studied and then are applied to position control of D. C. sevo drive fed by a four-quadrant chopper. Variable structure control with sliding mode gives fast dynamic response with no overshoot. And the resulting system bas good robust properties independent of the wide variations of electrical, mechanical parameters and external disturbances without any system identification. But the high frequency chatter component of control input in the sliding mode is undesirarable. A continuous control law that is a approximation to discontinuous control law is used for design.

  • PDF

Optimized Algebra LDPC Codes for Bandwidth Efficient Modulation

  • Hwang, Gi-Yean;Yu Yi;Lee, Moon-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • In this paper, we implement an efficient MLC/PDL system for AWGN channels. In terms of the tradeoff between the hardware implementation and system performance, proposed algebra LDPC codes are optimized by the Gaussian approximation(GA) according to the rate of each level assigned by the capacity rule and chosen as the component code. System performance with Ungerboeck Partitioning(UP), Miked Partitioning(MP) and Gray Mapping(GM) of 8PSK are evaluated, respectively. Many results are presented in this paper; they can indicate that the proposed MLC/PDL system using optimized algebra LDPC codes with different code rate, capacity rule and Gray mapping(GM) can achieve the best performance.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

A novel framework for the construction of cryptographically secure S-boxes

  • Razi Arshad;Mudassir Jalil;Muzamal Hussain;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • In symmetric cryptography, a cryptographically secure Substitution-Box (S-Box) is a key component of a block cipher. S-Box adds a confusion layer in block ciphers that provide resistance against well-known attacks. The generation of a cryptographically secure S-Box depends upon its generation mechanism. In this paper, we propose a novel framework for the construction of cryptographically secure S-Boxes. This framework uses a combination of linear fractional transformation and permutation functions. S-Boxes security is analyzed against well-known security criteria that include nonlinearity, bijectiveness, strict avalanche and bits independence criteria, linear and differential approximation probability. The S-Boxes can be used in the encryption of any grayscale digital images. The encrypted images are analyzed against well-known image analysis criteria that include pixel changing rates, correlation, entropy, and average change of intensity. The analysis of the encrypted image shows that our image encryption scheme is secure.

Direct Divergence Approximation between Probability Distributions and Its Applications in Machine Learning

  • Sugiyama, Masashi;Liu, Song;du Plessis, Marthinus Christoffel;Yamanaka, Masao;Yamada, Makoto;Suzuki, Taiji;Kanamori, Takafumi
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.99-111
    • /
    • 2013
  • Approximating a divergence between two probability distributions from their samples is a fundamental challenge in statistics, information theory, and machine learning. A divergence approximator can be used for various purposes, such as two-sample homogeneity testing, change-point detection, and class-balance estimation. Furthermore, an approximator of a divergence between the joint distribution and the product of marginals can be used for independence testing, which has a wide range of applications, including feature selection and extraction, clustering, object matching, independent component analysis, and causal direction estimation. In this paper, we review recent advances in divergence approximation. Our emphasis is that directly approximating the divergence without estimating probability distributions is more sensible than a naive two-step approach of first estimating probability distributions and then approximating the divergence. Furthermore, despite the overwhelming popularity of the Kullback-Leibler divergence as a divergence measure, we argue that alternatives such as the Pearson divergence, the relative Pearson divergence, and the $L^2$-distance are more useful in practice because of their computationally efficient approximability, high numerical stability, and superior robustness against outliers.

Numerical Simulation of Irregular Waves Over a Shoal Using Parabolic Wave Model (포물형 파랑모형을 이용한 수중천퇴상 불규칙파의 수치모의)

  • 윤성범;이정욱;연영진;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.158-168
    • /
    • 2001
  • A numerical model based on the wide-angle parabolic approximation equation is developed for the accurate simulation of the directional spreading and partial breaking of irregular waves. This model disintegrates the irregular waves into a series of monochromatic wave components, and the simultaneous calculations are made for each wave component. Then, the computed wave components are superposed to get the wave height of irregular waves. To consider the partial breaking of irregular waves in the computation the amount of energy dissipation due to breaking is estimated using the superposed wave height. The accuracy of the developed model is tested by comparing the numerical results with the experimental measurements reported earlier. In the case of non-breaking waves a considerable accuracy of the model is observed for both regular and irregular waves. On the contrary it is found that the accuracy is significantly degenerated for the case of breaking waves. Some analyses for the accuracy degeneration are presented.

  • PDF