• Title/Summary/Keyword: Approximate sensor

Search Result 79, Processing Time 0.03 seconds

Development of Straightness, Roundness Measurement System for Standard Electrode of Loss Angle (손실각 표준기 전극의 진직, 진원도 측정시스템 개발)

  • 장종훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.198-203
    • /
    • 1998
  • To acquire the high precision of profile for standard electrode of loss angle, it is needed ultraprecision machining technology like MEAP(Magnetic Electronic Abrasive Polishing) and the very high profile measurement technology which can measure a micro unit about the workpiece. So, in this paper, it was developed the measurement system of precision of profile using non-contactable sensor that was approximate sensor of capacitance type, because that is better than others in the electrical characteristics. And standard electrode of loss angle was machined by the MEAP machining technology. In this study, it was development of precision measurement system. This system could be used measure the workpiece of roundness and straightness much more precise and faster than general mechanical measurement system done before. And it could be helped to minimize machining time and planning by very fast and precise measurement about the workpiece.

  • PDF

Quantity Measurement by CAFFE Model and Distance and Width Measurement by Stereo Vision (CAFFE 모델을 이용한 수량 측정 및 스테레오 비전을 이용한 거리 및 너비측정)

  • Kim, Won-Seob;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.679-684
    • /
    • 2019
  • We propose a method to measure the number of specific species of class using CAFFE model and a method to measure length and width of object using stereo vision. To obtain the width of an object, the location coordinates of objects appearing on the left and right sensor is compared and the distance from the sensor to the object is obtained. Then the length of the object in the image by using the distance and the approximate value of the actual length of the object is calculated.

Data Dissemination in Wireless Sensor Networks with Instantly Decodable Network Coding

  • Gou, Liang;Zhang, Gengxin;Bian, Dongming;Zhang, Wei;Xie, Zhidong
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.846-856
    • /
    • 2016
  • Wireless sensor networks (WSNs) are widely applied in monitoring and control of environment parameters. It is sometimes necessary to disseminate data through wireless links after they are deployed in order to adjust configuration parameters of sensors or distribute management commands and queries to sensors. Several approaches have been proposed recently for data dissemination in WSNs. However, none of these approaches achieves both high efficiency and low complexity simultaneously. To address this problem, cluster-tree based network architecture, which divides a WSN into hierarchies and clusters is proposed. Upon this architecture, data is delivered from base station to all sensors in clusters hierarchy by hierarchy. In each cluster, father broadcasts data to all his children with instantly decodable network coding (IDNC), and a novel scheme targeting to maximize total transmission gain (MTTG) is proposed. This scheme employs a new packet scheduling algorithm to select IDNC packets, which uses weight status feedback matrix (WSFM) directly. Analysis and simulation results indicate that the transmission efficiency approximate to the best existing approach maximum weight clique, but with much lower computational overhead. Hence, the energy efficiency achieves both in data transmission and processing.

Spectral Analysis of On-the-go Soil Strength Sensor Data (이동식 토양 강도 센서 데이터 주파수 분석)

  • Chung, Sun-Ok;Suduth, Kenneth A.;Tan, Jinglu
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.355-361
    • /
    • 2008
  • As agricultural machinery has become larger and tillage practices have changed in recent decades, compaction as a result of wheel traffic and tillage has caused increasing concern. If strategies to manage compaction, such as deep tillage, could be applied only where needed, economic and environmental benefits would result. For such site-specific compaction management to occur, compacted areas within fields must be efficiently sensed and mapped. We previously developed an on-the-go soil strength profile sensor (SSPS) for this purpose. The SSPS measures within-field variability in soil strength at five soil depths up to 50 cm. Determining the variability structure of SSPS data is needed for site-specific field management since the variability structure determines the required intensity of data collection and is related to the delineation of compaction management zones. In this paper, soil bin data were analyzed by a spectral analysis technique to determine the variability structure of the SSPS data, and to investigate causes and implications of this variability. In the soil bin, we observed a repeating pattern due to soil fracture with an approximate 12- to 19-cm period, especially at the 10-cm depth, possibly due to cyclic development of soil fracture on this interval. These findings will facilitate interpretation of soil strength data and enhance application of the SSPS.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Ultrasonic Bonding of Au Flip Chip Bump for CMOS Image Sensor (CMOS 이미지 센서용 Au 플립칩 범프의 초음파 접합)

  • Koo, Ja-Myeong;Moon, Jung-Hoon;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • This study was focused on the feasibility of ultrasonic bonding of Au flip chip bumps for a practical complementary metal oxide semiconductor (CMOS) image sensor with electroplated Au substrate. The ultrasonic bonding was carried out with different bonding pressures and times after the atmospheric pressure plasma cleaning, and then the die shear test was performed to optimize the ultrasonic bonding parameters. The bonding pressure and time strongly affected the bonding strength of the bumps. The Au flip chip bumps were successfully bonded with the electroplated Au substrate at room temperature, and the bonding strength reached approximate 73 MPa under the optimum conditions.

  • PDF

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN

  • Li, Xiaofeng;Chen, Liangfeng;Wang, Jianping;Chu, Zhong;Li, Qiyue;Sun, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2414-2434
    • /
    • 2015
  • Among numerous localization schemes proposed specifically for Wireless Sensor Network (WSN), the range-free localization algorithms based on the received signal strength indication (RSSI) have attracted considerable research interest for their simplicity and low cost. As a typical range-free algorithm, Approximate Point In Triangulation test (APIT) suffers from significant estimation errors due to its theoretical defects and RSSI inaccuracy. To address these problems, a novel localization method called FIAPIT, which is a combination of an improved APIT (IAPIT) and a fuzzy logic system, is proposed. The proposed IAPIT addresses the theoretical defects of APIT in near (it's defined as a point adjacent to a sensor is closer to three vertexes of a triangle area where the sensor resides simultaneously) and far (the opposite case of the near case) cases partly. To compensate for negative effects of RSSI inaccuracy, a fuzzy system, whose logic inference is based on IAPIT, is applied. Finally, the sensor's coordinates are estimated as the weighted average of centers of gravity (COGs) of triangles' intersection areas. Each COG has a different weight inferred by FIAPIT. Numerical simulations were performed to compare four algorithms with varying system parameters. The results show that IAPIT corrects the defects of APIT when adjacent nodes are enough, and FIAPIT is better than others when RSSI is inaccuracy.

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

Approximate 3D Localization Mechanism in Wireless Sensor Network (무선 센서 네트워크 환경에서 3차원 근사 위치추적 기법)

  • Shim, Jaeseok;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.614-619
    • /
    • 2014
  • In WSN (Wireless Sensor Networks) based surveillance system, it needs to know the occurrence of events or objects and their locations, because the data have no meaning without location information. Using traditional 2D localization mechanisms provide good accuracy where altitude is fixed. But the mapping the position estimated by 2D localization to the real world can cause an error. Even though 3D localization mechanisms provide better accuracy than 2D localization, they need four reference nodes at least and high processing overhead. In our surveillance system, it is needed to estimate the height of the detected object in order to determine if the object is human. In this paper, we propose a height estimation mechanism which does not require many reference nodes and high complexity. Finally, we verify the performance of our proposed mechanism through various experiments.