• 제목/요약/키워드: Approximate Three-Dimensional Analysis

검색결과 62건 처리시간 0.024초

압연판의 두께 정밀도에 관한 연구 (Study on the thickness precision of rolled sheets)

  • 김동원;윤상건
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.837-845
    • /
    • 1987
  • 본 연구에서는 Tozawa의 이와 같은 근사적 3차원 해석법을 검토하여 그 특징 을 살피고 판나비, 판두께, 압하율의 변화가 삼차원변형역과 평면변형역의 최적 경계 면 위치에 미치는 영향을 고찰하고자 한다.

A two-dimensional hyperbolic spring model for mat foundation in clays subjected to vertical load

  • Der-Wen Chang;Tzu-Min Chou;Shih-Hao Cheng;Louis Ge
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.527-538
    • /
    • 2024
  • This study proposes a two-dimensional hyperbolic soil spring model for mat foundations in clays subjected to vertically uniform loads to simplify the complexity of three-dimensional finite element analysis on mat foundations. The solutions from three-dimensional finite element analysis were examined to determine the hyperbolic model parameters of the soil springs underneath the slab. Utilizing these model parameters, normalized functions across the middle section of the mat were obtained. The solutions from the proposed model, along with the approximate finite difference analysis of the mat in clays under vertical load, were found to be consistent with those from the three-dimensional finite element analysis. The authors conclude that the proposed method can serve as an alternative for the preliminary design of mat foundations.

사다리꼴 fin: 사각 fin과의 열손실 비교와 열손실에 미치는 경사요소의 효과 (Trapezoidal Fin : Comparison of Heat Loss with Rectangular Fin and the Effect of Slope Factor on the Heat Loss)

  • 강형석;윤세창
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.33-40
    • /
    • 2001
  • Heat loss from the trapezoidal fins haying different upper side slope and that from a rectangular fin are investigated by the three dimensional analytic method. It is shown that the trapezoidal fins having different upper side slope become an approximate rectangular fin by inst adjusting the slope factor. The comparison of the heat loss between a rectangular fin and an approximate rectangular fin is represented as a function of the non-dimensional fin length, fin width and Biot number to make sure that the analysis on the trapezoidal fins having different upper side slope is countable. One of the results is that the relative value of heat loss between a rectangular fin and an approximate rectangular fin is less than 1.5% for given ranges of non-dimensional length and width in case of Bi = 0.1.

  • PDF

인수분해 된 분모를 갖는 두 변수 유리함수 근사에 기반한 3차원 음향 포물선 방정식 제곱근 연산자의 분할기법 제안 (Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator)

  • 이근화
    • 한국음향학회지
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 본 연구에서는 두 변수 유리함수 근사법에 기반한 3차원 음향 포물선 방정식의 제곱근 연산자의 새로운 근사식을 제안한다. 이 근사식은 기존의 제곱근 연산자에 대한 근사 연구와 비교해서 두 가지의 장점을 가진다. 첫 번째는 광대역 각도 능력이다. 제안된 식은 방위각 $45^{\circ}$에서 3차원 음향 포물선 방정식의 거리 축으로부터 $62^{\circ}$까지 넓은 각도에 대해 정확도를 가지는데, 이 값은 기존에 연구된 3차원 음향 포물선 방정식 알고리즘의 각도 한계의 약 세 배이다. 두 번째로는 본 근사식의 분모는 수심과 횡 거리에 대한 연산자의 곱으로 표현된다는 점이다. 이러한 분할 형태는 3차원 포물선 방정식을 손쉽게 삼중대각행렬 방정식으로 변환할 수 있다는 점에서 수치해석에서 선호된다. 제안된 식의 성능을 검증하기 위해 위상 오차분석을 통해 타 근사법과의 비교 연구가 수행되었고, 제안된 방법은 가장 우수한 성능을 보였다.

Approximate analyses of reinforced concrete slabs

  • Vecchio, F.J.;Tata, M.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.1-18
    • /
    • 1999
  • Procedures are investigated by which nonlinear finite element shell analysis algorithms can be simplified to provide more cost effective approximate analyses of orthogonally-reinforced concrete flat plate structures. Two alternative effective stiffness formulations, and an unbalanced force formulation, are described. These are then implemented into a nonlinear shell analysis algorithm. Nonlinear geometry, three-dimensional layered stress analyses, and other general formulations are bypassed to reduce the computational burden. In application to standard patch test problems, these simplified approximate analysis procedures are shown to provide reasonable accuracy while significantly reducing the computational effort. Corroboration studies using various simple and complex test specimens provide an indication of the relative accuracy of the constitutive models utilized. The studies also point to the limitations of the approximate formulations, and identify situations where one should revert back to full nonlinear shell analyses.

말뚝지지 전면기초의 3차원 근사해석기법 개발 (Development of Three-dimensional Approximate Analysis Method for Piled Raft Foundations)

  • 조재연;정상섬
    • 한국지반공학회논문집
    • /
    • 제28권4호
    • /
    • pp.67-78
    • /
    • 2012
  • 철지반의 비선형성을 고려한 말뚝지지 전면기초의 3차원 해석기법(YSPR)을 개발하였다. 전면기초는 6개의 자유도를 가진 평면쉘 요소로, 말뚝은 보-기둥 요소로 모델링하여 전면기초와 결합하였다. 또한 말뚝두부 및 지반의 강성은 $6{\times}6$ 강성행렬로 모델링 하였으며, 전면기초-말뚝-지반의 상호작용은 비선형 하중전이함수를 이용하여 선형/비선형거동의 모사가 가능하도록 하였다. 기존의 단순해석기법, 유한요소해석 및 현장계측값과의 비교 분석 결과, 본 해석기법이 대단면 말뚝지지전면기초에서 말뚝의 축하중 분포와 침하량을 비교적 정확히 산정하는 것으로 판단되며, 이러한 검증을 토대로 실제 대단면 기초설계에 대한 적용 가능함을 확인할 수 있었다.

사면보강 뿌리말뚝공법의 준3차원적 안정해석기법 (Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement)

  • 김홍택;강인규;박사원
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

ONE-DIMENSIONAL ANALYSIS OF THERMAL STRATIFICATION IN THE AHTR COOLANT POOL

  • Zhao, Haihua;Peterson, Per F.
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.953-968
    • /
    • 2009
  • It is important to accurately predict the temperature and density distributions in large stratified enclosures both for design optimization and accident analysis. Current reactor system analysis codes only provide lumped-volume based models that can give very approximate results. Previous scaling analysis has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by jets modeled using integral techniques. This allows very large reductions in computational effort compared to three-dimensional CFD simulation. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was developed to implement such ideas. This paper summarizes major models for the BMIX++ code, presents the two-plume mixing experiment simulation as one validation example, and describes the codes' application to the liquid salt buffer pool system in the AHTR (Advanced High Temperature Reactor) design. Three design options have been simulated and they exhibit significantly different stratification patterns. One of design options shows the mildest thermal stratification and is identified as the best design option. This application shows that the BMIX++ code has capability to provide the reactor designers with insights to understand complex mixing behavior with mechanistic methods. Similar analysis is possible for liquid-metal cooled reactors.

다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구 (A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field.)

  • 권창오;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

원심다익송풍기 유동의 삼차원 Navier-Stakes 해석 (Three-Dimensional Navier-Stokes Analysis of the Flow through A Multiblade Centrifugal Fan)

  • 서성진;첸시;김광용;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.42-48
    • /
    • 1998
  • Numerical study is presented for the analysis of three-dimensional incompressible turbulent flows in multiblade centrifugal fan. Reynolds-averaged Navier-Stokes equations with standard k - $\epsilon$ turbulence model are transformed to non-orthogonal curvilinear coordinates, and are discretized with finite volume approximations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational area is divided into three blocks; core, impeller and scroll, which are linked by multi-block method. The flow inside of the fan is regarded as steady flow, and mathematical formula established from the cascade theory and empirical coefficient are employed to simulate tile flow through the impeller. From comparisons between the computational results and the experimental data, the validity of the mathematical formula for the blade forces was examined and good results were obtained qualitatively. Hence, we can get the flow characteristics of multi-blade centrifugal fan and it will be a corner stone of the development of the multiblade centrifugal fan.

  • PDF