• Title/Summary/Keyword: Approaches to Learning

Search Result 968, Processing Time 0.025 seconds

Troubleshooting System for Environmental Problems in a Livestock Building Using an Expert System and a Neural Network (전문가시스템과 신경회로망에 의한 축사환경개선시스템)

  • ;Don D. Jones
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.95-102
    • /
    • 1994
  • Since parameters influencing the indoor environment of livestock building interrelate so complicatedly, it is of great difficulty to identify the exact cause of environmental problems in a livestock building. Therefore, the approaches for the problem solving based on experience not numerical calculation will be helpful to the management of livestock building This study was attempt to develop the decision supporting system to diagnose environmen- tal problems in a livestock building based on an expert system and a neural network. HClips$^3$), attaching the Hangeul user interface to Clips which is known as a powerful shell for develop- ing expert system, was used. The multilayer perceptron consisting of 4 layers including back propagation learning algorithm was adpoted, which was rapidly converged within the allowable range at 50,000 learning sweeps. The expert system and neural network seemed to work well for this specific application, providing proper suggestions for some environmental problems: particularly, the neural net- work trained by an environmental problem and its corresponding answer with certainty factor, produced the same results as those by expert system.

  • PDF

A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

  • Zhuo, Min
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.259-271
    • /
    • 2007
  • Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Effects of Action Observation Training Combied with Auditory Cueing on Gait Ability in Patients with Stroke: a Preliminary Pilot Study

  • Kim, Hyeong-Min;Son, Sung-Min;Ko, Yu-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.3
    • /
    • pp.98-103
    • /
    • 2022
  • Purpose: New therapeutic approaches have emerged to improve gait ability in patients with brain damage, such as action observation learning (AOT), auditory cueing, motor imagery etc. We attempted to investigate the effects of AOT with auditory cueing (AOTAC) on gait function in patients with stroke. Methods: The eighteen stroke patients with a unilateral hemiparesis were randomly divided into three groups; the AOTAC, AOT, and control groups. The AOTAC group (n=8) received training via observing a video that showed normal gait with sound of footsteps as an auditory cue; the AOT group (n=6) receive action observation without auditory stimulation; the control group (n=5) observed the landscape video image. Intervention time of three groups was 30 minutes per day, five times a week, for four weeks. Gait parameters, such as cadence, velocity, stride length, stance phase, and swing phase were collected in all patients before and after each training session. Results: Significant differences were observed among the three groups with respect to the parameters, such as cadence, velocity, stride length, and stance/swing phase. Post-hoc analysis indicated that the AOTAC group had a greater significant change in all of parameters, compared with the AOT and control groups. Conclusion: Our findings suggest that AOTAC may be an effective therapeutic approach to improve gait symmetry and function in patients with stroke. We believe that this effect is attributable to the change of cortical excitability on motor related to cortical areas.

Advanced Approach for Performance Improvement of Deep Learningbased BIM Elements Classification Model Using Ensemble Model (딥러닝 기반 BIM 부재 자동분류 학습모델의 성능 향상을 위한 Ensemble 모델 구축에 관한 연구)

  • Kim, Si-Hyun;Lee, Won-Bok;Yu, Young-Su;Koo, Bon-Sang
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.12-25
    • /
    • 2022
  • To increase the usability of Building Information Modeling (BIM) in construction projects, it is critical to ensure the interoperability of data between heterogeneous BIM software. The Industry Foundation Classes (IFC), an international ISO format, has been established for this purpose, but due to its structural complexity, geometric information and properties are not always transmitted correctly. Recently, deep learning approaches have been used to learn the shapes of the BIM elements and thereby verify the mapping between BIM elements and IFC entities. These models performed well for elements with distinct shapes but were limited when their shapes were highly similar. This study proposed a method to improve the performance of the element type classification by using an Ensemble model that leverages not only shapes characteristics but also the relational information between individual BIM elements. The accuracy of the Ensemble model, which merges MVCNN and MLP, was improved 0.03 compared to the existing deep learning model that only learned shape information.

A Stay Detection Algorithm Using GPS Trajectory and Points of Interest Data

  • Eunchong Koh;Changhoon Lyu;Goya Choi;Kye-Dong Jung;Soonchul Kwon;Chigon Hwang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.176-184
    • /
    • 2023
  • Points of interest (POIs) are widely used in tourism recommendations and to provide information about areas of interest. Currently, situation judgement using POI and GPS data is mainly rule-based. However, this approach has the limitation that inferences can only be made using predefined POI information. In this study, we propose an algorithm that uses POI data, GPS data, and schedule information to calculate the current speed, location, schedule matching, movement trajectory, and POI coverage, and uses machine learning to determine whether to stay or go. Based on the input data, the clustered information is labelled by k-means algorithm as unsupervised learning. This result is trained as the input vector of the SVM model to calculate the probability of moving and staying. Therefore, in this study, we implemented an algorithm that can adjust the schedule using the travel schedule, POI data, and GPS information. The results show that the algorithm does not rely on predefined information, but can make judgements using GPS data and POI data in real time, which is more flexible and reliable than traditional rule-based approaches. Therefore, this study can optimize tourism scheduling. Therefore, the stay detection algorithm using GPS movement trajectories and POIs developed in this study provides important information for tourism schedule planning and is expected to provide much value for tourism services.

Generative Interactive Psychotherapy Expert (GIPE) Bot

  • Ayesheh Ahrari Khalaf;Aisha Hassan Abdalla Hashim;Akeem Olowolayemo;Rashidah Funke Olanrewaju
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2023
  • One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.

Exploring the Performance of Deep Learning-Driven Neuroscience Mining in Predicting CAUP (Consumer's Attractiveness/Usefulness Perception): Emphasis on Dark vs Light UI Modes (딥러닝 기반 뉴로사이언스 마이닝 기법을 이용한 고객 매력/유용성 인지 (CAUP) 예측 성능에 관한 탐색적 연구: Dark vs Light 사용자 인터페이스 (UI)를 중심으로)

  • Kim, Min Gyeong;Costello, Francis Joseph;Lee, Kun Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.19-22
    • /
    • 2022
  • In this work, we studied consumers' attractiveness/usefulness perceptions (CAUP) of online commerce product photos when exposed to alternative dark/light user interface (UI) modes. We analyzed time-series EEG data from 31 individuals and performed neuroscience mining (NSM) to ascertain (a) how the CAUP of products differs among UI modes; and (b) which deep learning model provides the most accurate assessment of such neuroscience mining (NSM) business difficulties. The dark UI style increased the CAUP of the products displayed and was predicted with the greatest accuracy using a unique EEG power spectra separated wave brainwave 2D-ConvLSTM model. Then, using relative importance analysis, we used this model to determine the most relevant power spectra. Our findings are considered to contribute to the discovery of objective truths about online customers' reactions to various user interface modes used by various online marketplaces that cannot be uncovered through more traditional research approaches like as surveys.

  • PDF

Understanding of the Overview of Quality 4.0 Using Text Mining (텍스트마이닝을 활용한 품질 4.0 연구동향 분석)

  • Kim, Minjun
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.403-418
    • /
    • 2023
  • Purpose: The acceleration of technological innovation, specifically Industry 4.0, has triggered the emergence of a quality management paradigm known as Quality 4.0. This study aims to provide a systematic overview of dispersed studies on Quality 4.0 across various disciplines and to stimulate further academic discussions and industrial transformations. Methods: Text mining and machine learning approaches are applied to learn and identify key research topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview of Quality 4.0. Results: 1) A total of 27 key research topics were identified based on the analysis of 1234 research papers related to Quality 4.0. 2) A relationship among the 27 key research topics was identified. 3) A multilevel framework consisting of technological enablers, business methods and strategies, goals, application industries of Quality 4.0 was developed. 4) The trends of key research topics was analyzed. Conclusion: The identification of 27 key research topics and the development of the Quality 4.0 framework contribute to a better understanding of Quality 4.0. This research lays the groundwork for future academic and industrial advancements in the field and encourages further discussions and transformations within the industry.

Rethinking K-6 Scientific literacy: A Case Study of Using Science Books as Tool to Cultivate a Fundamental Sense of Scientific Literacy

  • Kim, Mi-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.8
    • /
    • pp.711-723
    • /
    • 2007
  • As the discourse of scientific literacy has broadly summed up the goals of science education in the current decade, this study attempts to question how we contextualize appropriate interpretations and feasible approaches to scientific literacy in K-6 science education. With respect to the complex praxis of scientific knowledge and practice, this study emphasizes the participatory framework of scientific literacy which interweaves children's everyday experiences and science learning. This study also concerns children's abilities to understand and enact scientific enterprises (i.e., children's fundamental sense of scientific literacy). As a way of developing K-6 scientific literacy, this study investigates how using science books can broaden the scope of children's understandings of science in life connections and promote a fundamental sense of scientific literacy through talking, reading, and writing skills in Grade two science classrooms in Canada. Second graders were engaged in learning "sound" for five weeks. During science lessons, children's talks were recorded and their writings were collected for data interpretation. This research finds that using science books can encourage children to become engaged in communicative activities such as talking, reading, and writing in science; furthermore, using science books develops children's inquiry skills. These findings open a further discussion on scientific literacy at the K-6 levels.

Deep Learning based Rapid Diagnosis System for Identifying Tomato Nutrition Disorders

  • Zhang, Li;Jia, Jingdun;Li, Yue;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2012-2027
    • /
    • 2019
  • Nutritional disorders are one of the most common diseases of crops and they often result in significant loss of agricultural output. Moreover, the imbalance of nutrition element not only affects plant phenotype but also threaten to the health of consumers when the concentrations above the certain threshold. A number of disease identification systems have been proposed in recent years. Either the time consuming or accuracy is difficult to meet current production management requirements. Moreover, most of the systems are hard to be extended, only detect a few kinds of common diseases with great difference. In view of the limitation of current approaches, this paper studies the effects of different trace elements on crops and establishes identification system. Specifically, we analysis and acquire eleven types of tomato nutritional disorders images. After that, we explore training and prediction effects and significances of super resolution of identification model. Then, we use pre-trained enhanced deep super-resolution network (EDSR) model to pre-processing dataset. Finally, we design and implement of diagnosis system based on deep learning. And the final results show that the average accuracy is 81.11% and the predicted time less than 0.01 second. Compared to existing methods, our solution achieves a high accuracy with much less consuming time. At the same time, the diagnosis system has good performance in expansibility and portability.