• Title/Summary/Keyword: Applications of Internet Of Things

Search Result 384, Processing Time 0.023 seconds

IoT Sensor Flow Control Application System (IoT 센서 흐름 제어 어플리케이션 시스템)

  • Lim, Hyeok;Yu, Dong-Gyun;Jeong, Do-Hyeong;Ryu, Seung-Han;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.887-888
    • /
    • 2016
  • Internet data for IoT(Internet of Things) period was changed in such a way that the data is done by sharing information for the user. However, in the existing system IoT environment for the user to utilize the system it has a problem does not take into account the individual characteristics. And there must be an intermediate vectors are capable of controlling problems such as Dongle. In this paper, through the flow sensor control applications as a way to solve this problem to control the flow of the sensor according to the characteristics desired by the user. Due to this makes it possible to easily manage the sensor compared to conventional IoT environment. Accordingly, the user must manage the sensor through the application regardless of time and place. So it is believed to reduce the unnecessary power consumption is possible effective control sensor.

  • PDF

A Review of Concepts, Advantages and Pitfalls of Healthcare Applications in Blockchain Technology

  • Al-asmari, Aisha M.;Aloufi, Rahaf I.;Alotaibi, Youseef
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.199-210
    • /
    • 2021
  • Recently, research in blockchain technology has grown in popularity. Most of these researches have pointed out designing and improving conceptual structures to create digital systems that are more secure, accessible, and effective. Although blockchain offers a wide range of advantages, it also has some pitfalls. This research aims to present an understanding of the properties of blockchain, the advantages, pitfalls, and applications based on blockchain technology. To achieve the goal of understanding blockchain technology concepts, a systematic literature review approach was introduced. 93 papers were chosen and reviewed in total. Therefore, this research provides a summary of recent studies that have been published in the field of blockchain. Moreover, we have created concept maps and tables that aid in a deep understanding of blockchain technology concepts and exhibit some of the blockchain applications. In blockchain-based applications, we focused on two areas, namely the Internet of Things (IoT) and healthcare.

Design and Implementation of SDN-based 6LBR with QoS Mechanism over Heterogeneous WSN and Internet

  • Lee, Tsung-Han;Chang, Lin-Huang;Cheng, Wei-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1070-1088
    • /
    • 2017
  • Recently, the applications of Internet of Things (IoTs) are growing rapidly. Wireless Sensor Network (WSN) becomes an emerging technology to provide the low power wireless connectivity for IoTs. The IPv6 over low-power wireless personal area networks (6LoWPAN) has been proposed by IETF, which gives each WSN device an IPv6 address to connect with the Internet. The transmission congestion in IoTs could be a problem when a large numbers of sensors are deployed in the field. Therefore, it is important to consider whether the WSN devices have be completely integrated into the Internet with proper quality of service (QoS) requirements. The Software Defined Network (SDN) is a new architecture of network decoupling the data and control planes, and using the logical centralized control to manage the forwarding issues in large-scale networks. In this research, the SDN-based 6LoWPAN Border Router (6LBR) is proposed to integrate the transmission from WSNs to Internet. The proposed SDN-based 6LBR communicating between WSNs and the Internet will bring forward the requirements of end-to-end QoS with bandwidth guarantee. Based on our experimental results, we have observed that the selected 6LoWPAN traffic flows achieve lower packet loss rate in the Internet. Therefore, the 6LoWPAN traffic flows classified by SDN-based 6LBR can be reserved for the required bandwidth in the Internet to meet the QoS requirements.

An Android BLE Emulator for Developing Wearable Apps (웨어러블 어플리케이션 개발을 위한 안드로이드 BLE 에뮬레이터)

  • Moon, Hyeonah;Park, Sooyong;Choi, Kwanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • BLE (Bluetooth Low Energy) has been extensively used for communication between mobile applications and wearable devices in IoT (Internet of Things). In developing Android applications, wearable devices, on which the applications can run, should be available because the existing Android SDK does not support any BLE emulation facility. In this study, we have designed and implemented the first Android BLE emulator. Using this, we are able to develop and test BLE-based Android applications even when without wearable devices. We have also proposed an automatic generation method of Android BLE scenarios based on graph model. We have shown that the method is useful for systematically testing BLE application protocols by running the generated scenarios on the Android BLE emulator.

Research for the Element to Analyze the Performance of Modern-Web-Browser Based Applications (모던 웹 브라우저(Modern-Web-Browser) 기반 애플리케이션 성능분석을 위한 요소 연구)

  • Park, Jin-tae;Kim, Hyun-gook;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.278-281
    • /
    • 2018
  • The early Web technology was to show text information through a browser. However, as web technology advances, it is possible to show large amounts of multimedia data through browsers. Web technologies are being applied in a variety of fields such as sensor network, hardware control, and data collection and analysis for big data and AI services. As a result, the standard has been prepared for the Internet of Things, which typically controls a sensor via HTTP communication and provides information to users, by installing a web browser on the interface of the Internet of Things. In addition, the recent development of web-assembly enabled 3D objects, virtual/enhancing real-world content that could not be run in web browsers through a native language of C-class. Factors that evaluate the performance of existing Web applications include performance, network resources, and security. However, since there are many areas in which web applications are applied, it is time to revisit and review these factors. In this thesis, we will conduct an analysis of the factors that assess the performance of a web application. We intend to establish an indicator of the development of web-based applications by reviewing the analysis of each element, its main points, and its needs to be supplemented.

  • PDF

Factor Graph-based Multipath-assisted Indoor Passive Localization with Inaccurate Receiver

  • Hao, Ganlin;Wu, Nan;Xiong, Yifeng;Wang, Hua;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.703-722
    • /
    • 2016
  • Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels.

An Intelligent MAC Protocol Selection Method based on Machine Learning in Wireless Sensor Networks

  • Qiao, Mu;Zhao, Haitao;Huang, Shengchun;Zhou, Li;Wang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5425-5448
    • /
    • 2018
  • Wireless sensor network has been widely used in Internet of Things (IoT) applications to support large and dense networks. As sensor nodes are usually tiny and provided with limited hardware resources, the existing multiple access methods, which involve high computational complexity to preserve the protocol performance, is not available under such a scenario. In this paper, we propose an intelligent Medium Access Control (MAC) protocol selection scheme based on machine learning in wireless sensor networks. We jointly consider the impact of inherent behavior and external environments to deal with the application limitation problem of the single type MAC protocol. This scheme can benefit from the combination of the competitive protocols and non-competitive protocols, and help the network nodes to select the MAC protocol that best suits the current network condition. Extensive simulation results validate our work, and it also proven that the accuracy of the proposed MAC protocol selection strategy is higher than the existing work.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Optimizing Energy-Latency Tradeoff for Computation Offloading in SDIN-Enabled MEC-based IIoT

  • Zhang, Xinchang;Xia, Changsen;Ma, Tinghuai;Zhang, Lejun;Jin, Zilong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4081-4098
    • /
    • 2022
  • With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.

Performance Analysis of Energy-Efficient Secure Transmission for Wireless Powered Cooperative Networks with Imperfect CSI

  • Yajun Zhang;Jun Wu;Bing Wang;Hongkai Wang;Xiaohui Shang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2399-2418
    • /
    • 2023
  • The paper focuses on investigating secure transmission in wireless powered communication networks (WPCN) that involve multiple energy-constrained relays and one energy-constrained source. The energy is harvested from a power beacon (PB) while operating in the presence of a passive eavesdropper. The study primarily aims to achieve energy-efficient secure communications by examining the impact of channel estimation on the secrecy performance of WPCN under both perfect and imperfect CSI scenarios. To obtain practical insights on improving security and energy efficiency, we propose closed-form expressions for secrecy outage probability (SOP) under the linear energy harvesting (LEH) model of WPCN. Furthermore, we suggest a search method to optimize the secure energy efficiency (SEE) with limited power from PB. The research emphasizes the significance of channel estimation in maintaining the desired performance levels in WPCN in real-world applications. The theoretical results are validated through simulations to ensure their accuracy and reliability.