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Abstract 
 

Wireless sensor network has been widely used in Internet of Things (IoT) applications to 
support large and dense networks. As sensor nodes are usually tiny and provided with limited 
hardware resources, the existing multiple access methods, which involve high computational 
complexity to preserve the protocol performance, is not available under such a scenario. In this 
paper, we propose an intelligent Medium Access Control (MAC) protocol selection scheme 
based on machine learning in wireless sensor networks. We jointly consider the impact of 
inherent behavior and external environments to deal with the application limitation problem of 
the single type MAC protocol. This scheme can benefit from the combination of the 
competitive protocols and non-competitive protocols, and help the network nodes to select the 
MAC protocol that best suits the current network condition. Extensive simulation results 
validate our work, and it also proven that the accuracy of the proposed MAC protocol selection 
strategy is higher than the existing work. 
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1. Introduction 

Medium Access Control (MAC) protocols play an important role in wireless sensor 
networks. It also has been widely used in Internet of Things (IoT) applications to support large 
and dense networks [1]. In dense networks, sensor nodes always carry out single and simple 
MAC protocol. According to different application requirements, these MAC protocols can be 
generally classified into competitive protocols (e.g. CSMA/CA), non-competitive protocols 
(e.g. TDMA) and hybrid protocols. Common sensor nodes are usually tiny and inexpensive 
devices with a small battery. However, beacuse the existing multiple access methods for 
improving protocol performance prefers the optimal adaptation-based approach, they are not 
affordable for the senor nodes due to the heavy computational burden. 

Existing researches and practices have shown that the competitive protocols are more 
suitable for the network with lighter loads, while the non-competitive protocols are more 
suitable for the network with heavier loads [2],[3]. Therefore, researchers have proposed 
several hybrid strategies to deal with the constraint of a single MAC protocol under the 
dynamic network environment [4],[5]. The fundamental problem of the above issues is that the 
principle of protocol selection is ambiguous to some extent. Considering different parameters, 
the decision may be contradictory under different scenarios, and the complicated algorithm 
usually caused varying degrees of control overhead. The development of machine learning 
make itself a potential solution for these problems.  

Recently, the machine learning technique has been adopted to improve MAC protocols. The 
work in [6],[7] focuses on Primary User’s (PU’s) power and time feature, and uses the Support 
Vector Machine (SVM) to train the classifier to identify the current protocol of PU. The 
classification result can help the Secondary User (SU) to choose the right network according to 
its requirement. Naddafzadeh et al. [8] and Zhou et al. [9] investigate reinforcement learning 
schemes to help SUs capture the state of the primary user, and learn the reasonable feedback to 
improve its own utility. All the aforementioned work focuses on the PU’s inherent behavior 
and only considers the power or the statistical features of traffic load. In other words, the 
existing studies ignore the dynamic network environments and the external characteristics of 
other items. Therefore, we exploit the intelligent technique to put forward a solution to the 
application limitation problem of the single type MAC protocol in wireless sensor networks. 

In this paper, we propose a MAC protocol selection model for the dynamic network 
environment. Some crucial network parameters are chosen to build the feature data set, and a 
classifier is trained based on the classification learning technique. The MAC protocol selection 
model can select optimal MAC protocol when the classification accuracy becomes desirable. 
We present a selection framework, which completes the MAC protocol selection task through 
two stages. The first stage is classification learning process, where different kinds of feature 
data sets are trained by Sequential Minimal Optimization (SMO) algorithm to obtain an 
optimal classification result. The second stage is the selection decision process, where the 
classifier will help network nodes to select a suitable MAC protocol. Firstly, we collect the 
external environment parameters and the inherent parameters of the network to build a data set 
in the learning process. Meanwhile, for the two-class problem, we chose SMO algorithm with 
polynomial kernel to train the data set. After that, we obtain a classifier in the decision process. 
Finally, the sensor node can use the classifier to decide whether the current MAC protocol 
should be changed. The experimental results show that classification performance is 
significantly better than existing solutions. To the best of our knowledge, the proposed 
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selection model is the first intelligent method that utilizes classification learning for MAC 
protocol selection. The main contributions of this paper can be summarized as follows: 
 We present a MAC protocol selection model based on machine learning which aims at 

selecting the most suitable MAC protocol. 
 We use the fuzzy set theory to improve the decision criterion, by this means a robust 

and effective protocol selection model is obtained. 
 We use multi-granule incremental knowledge gaining technique to build a data set for 

training, which can gradually improve the accuracy of classification result. 
The remainder of this paper is organized as follows. Section 2 briefly reviews related work. 

Section 3 introduces the system model. Section 4 explains the classification learning method 
for MAC protocol selection. Section 5 reports the validation of our proposal via extensive 
simulations. Finally, Section 6 concludes this research. 

2. Related Work 
A single type MAC protocol has limited application scope in the dynamic network 
environment, which is a key challenge in the design of wireless sensor network. This challenge 
has been attracted extensive investigation over the past decades, and the related proposals can 
be broadly divided into two categories. The first category [4],[5],[10]-[17] improves MAC 
protocol performance optimization through the traditional optimization algorithms, and the 
second category [6]-[9],[18],[19] accomplish this task by exploiting intelligence techniques. 

For the first category, most of the access strategies modify the protocol frame structure 
adaptively to fit the dynamic network environment. The first approach to achieve this goal is to 
improve the performance of competitive protocols via dynamic adjustment of collision 
window and packet aggregation, or other collision handling schemes. Recently, such an idea 
has been upgraded by adopting learning ability [10]-[12]. Jang et al. [10] discuss a 
fully-distributed CSMA game-theoretic algorithm for each link without message exchange. 
Users can follow an ordinal potential game function to improve throughput performance. 
Stamatakis et al. [11] propose a two-stage dynamic spectrum assignment schemes to support 
more access opportunities for SU. Pandit et al. [12] present an event-driven backoff algorithm 
to minimize collision among the cooperation cognitive users when someone has been reserved 
the idle channels. However, these protocols are still not sufficient to support dense networks. 
The second approach is to improve the performance of non-competitive protocols by using 
more efficient MAC scheduling algorithms and policies to assign time slots to each real-time 
node to send their traffic. Liu et al. [13] propose a distributed multi-channel 
topology-transparent broadcast scheduling algorithm in Ad hoc networks. In [14], Sami et al. 
investigate a cooperative MAC protocol for CRNs with opportunistic energy harvesting in 
SUs. However, these protocols require high computational complexity and exact network 
topology. The third approach is based on the idea of hybrid access strategies that combine the 
advantage of the aforementioned protocols to solve competing and scheduling problems. Zhou 
et al. [15] dynamically adapt the duty-cycle according to the current network traffic, in which, 
the dynamic TDMA slots structure can be modified when the traffic increases significantly. 
According to [16], a novel hybrid MAC protocol can flexibly adapt to traffic and topology 
changing. Nodes can change their MAC behavior, because it allows contention in TDMA slots 
to cope with high traffic and low latency when some emergency events have been occurred. 
Ye et al. [17] propose an analytical model for DCF and dynamic-TDMA protocol to calculate 
MAC switching point in a tractable way. According to the switching point, nodes can change 
protocol boundary between DCF and dynamic-TDMA protocol under a time-varying network. 
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Nevertheless, the main deficiencies of these studies are the excessive utilization of control 
information among nodes, which oppose the alleviation of communication overhead. 

Among the second category, some intelligent protocols are proposed to optimize the 
protocol performance. Hu et al. [7] add the durations of PU’s busy and idle times to the 
classification feature variables, so as to help the secondary user to choose the appropriate 
network according to its requirement. However, this research is mostly design an 
identification scheme for SU, it is not directly optimize protocol performance. On the other 
hand, reinforcement learning has been used to improve the network throughput. Mihaylov et al. 
[18] propose a reinforcement learning approach, in which the synchronization reward signal 
can help nodes to transmit data and avoid inherent interferences. Followed by this work, [19] 
deepens a SVM based approach in a multi-channel and multi-hop network instead of the 
original single channel operation. Although the prior work has been learned from the 
perspective of the network environment and the node behavior to optimize protocol, most of 
them consider the learning target only from traffic load or energy while the valuable 
parameters in the presence of dynamic network environments have not been covered. 

In this research, we use the classification learning method to deal with the application 
limitation problem introduced by the single type MAC protocol, where distinguishing the 
characteristics of different kinds of MAC protocols serves as one of the kernel tasks. This 
finding drives us to choose some typically used competitive protocol and the non-competitive 
protocol as candidates and jointly consider the impact of inherent behavior and external 
environments. On this basis, the classification learning process is the other important part. 

3. System Model 
There are two types of node in the considered system: access point (AP) and sensor node. We 
assume that there are only one AP and N  sensor nodes in the network. The AP is used to carry 
out classification learning task, which is equivalent to a supervisor in supervised learning. 
Since sensor nodes are tiny and inexpensive devices with limited hardware resources and 
power supply, they cannot support such learning computations. All of the nodes share a single 
wireless channel to transmit packets. In general, nodes are synchronized to the same timing 
clock, which can be achieved by global synchronization approaches, such as GPS, 
centralization synchronization [5], and mutual synchronization [2]. In our work, each node can 
adjust its own clock by receiving broadcast synchronization message from the AP. The 
broadcast information also includes the classification learning result. It can be used to help 
sensor nodes to select optimal MAC protocol when the classification accuracy achieves an 
acceptable result. We assume that: 1) the wireless channels are ideal, and 2) receiving errors 
solely stem from the message conflicts, and 3) each node always has a packet to transmit. 
When multiple messages arrive at a node simultaneously, all the messages are damaged, i.e., 
capturing effect is not considered. 

3.1 Framework for MAC Selection 
In the considered network, the nodes will notice AP when they access or leave the network. 

The notice messages include external parameters and network parameters information. 
Therefore, AP is used as a decision maker which can obtain the situation of the network. The 
flow chart of the MAC protocol selection framework is shown in Fig. 1, which is composed of 
two stages, i.e., learning process and decision process. 
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Fig. 1. The MAC protocol selection framework 

3.2 Differences between MAC Protocols 
In highly dynamic wireless network environments, the performance of competitive MAC 
protocol will be dramatically degraded when the network load becomes heavier. By contrast, 
the non-competitive protocol may waste network resources when the network load turns 
lighter. Taking account of this prior knowledge, we respectively select CSMA/CA and TDMA 
as the candidate MAC protocols to represent the competitive protocol and the non-competitive 
protocol in this paper. The performances of these two simple protocols vary significantly 
under different network conditions. For better understanding, we take a simple example as 
follows. 

CSMA/CA protocol can be used in the distributed applications, as each node decides its 
time of accessing to the network independently. However, the competitive accessing strategy 
makes CSMA/CA protocol suitable for the networks with light load only [20]-[22]. 
Alternatively, TDMA protocol assigns the time slot to each sensor node in mandatory even if 
nodes do not send data. For the light traffic load, the majority of the time slots will be wasted 
and the throughput will remain at a low range. If the load is increased, all of the time slots will 
be saturated without collision [23]-[27]. So that, the throughput can rises to an efficient and 
stable state. 
This paper investigates the performance differences of the two protocols under different 
network environments. By executing different MAC protocols, the input and output 
parameters of the network are collected to form a feature data set, which is further applied to 
establish the relationship between the network performance and the environment parameters. 
The relationship is then used to train a classifier to decide the suitable MAC protocol under 
different network loads. The evaluated classifier is finally used to help nodes to select the 
suitable protocol when the network environment varies with time.  

4. Classification Learning Method for Protocol Selection 
Taking account of the performance differences between competitive and non-competitive 
MAC protocol, we formulate the classification learning method in the protocol selection 
model. Based on this model, we establish a data set for training by using the multi-granule 
incremental knowledge gaining technique. Subsequently, the collected data set is applied to 
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train the classifier. 

4.1 Protocol Selection Criterion 
As mentioned above, the CSMA/CA and dynamic TDMA are the candidate MAC protocols in 
this paper. In CSMA/CA, the node first detects whether the channel as idle. Then, it takes 
binary exponential backoff (BEB) algorithm opportunistic to access channel in collision 
avoidance phase. In dynamic TDMA, nodes are allocated with the time slot by reserving 
mutually and the nodes use the slots for packet transmission. The performance of the two 
protocols is compared in Fig. 2 with varying network loads. Obviously, CSMA/CA shows the 
better throughput performance with light load area, and TDMA shows the better throughput 
performance with heavy load area. As show in Fig. 2, the two performance curves cross at 
point C , the CSMA/CA curve reaches the maximum value at point M . Let point C  be the 
center, we introduce a symmetric point 'M  that satisfies | | | ' |MC CM= . Notably, on the left 
area of point C , the performance gap between CSMA/CA and TDMA is narrowed when the 
network load increases. While on the right area of point C , the performance gap between 
CSMA/CA and TDMA becomes widen with the increasing network load. 
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Fig. 2. The illustration of MAC protocol performances under different network loads 
 

For the CSMA/CA curve, its performance decreases rapidly after passing through the point 
M , however, it is still better than TDMA counterpart before reading point C . Therefore, the 
classification criterion is decided by the crossing point rather than the maximum point. In 
order to gain the suitable protocol, it is desired to select and switch protocol is at point C . 
However, the protocol selection scheme may not always carry out timely. Consequently, we 
use the fuzzy set theory to circumvent this issue. 

Definition 1: A fuzzy set is defined as { },iA X i N= ∈ , where iX  stands for the pertaining 
result of node i . It can be expressed as: 
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where /CSMA CAµ  and TDMAµ  respectively represent the current protocol pertain to CSMA/CA and 
TDMA protocol. We use / ( )CSMA CA xµ  and ( )TDMA xµ  to denote the pertaining degree of current 
protocol, respectively. /CSMA CAx  ( TDMAx ) is the Boolean variable to convey whether node i  
select CSMA/CA (TDMA) protocol. At point C , / ( ) ( ) 0.5CSMA CA TDMAx xµ µ= = . If the network 
load is in the heavy area, the pertaining result prefers TDMA protocol, in this case 

/ ( ) ( )CSMA CA TDMAx xµ µ< , / 0CSMA CAx =  and 1TDMAx = . / ( )CSMA CA xµ  gradually decreases to 0, 
( )TDMA xµ  gradually increases to 1. If the network load is in the light area, the pertaining result 

prefers CSMA/CA protocol, accordingly / ( ) ( )CSMA CA TDMAx xµ µ> , / 1CSMA CAx =  and 0TDMAx = . 
/ ( )CSMA CA xµ  gradually increases to 1, ( )TDMA xµ  gradually decreases to 0. Obviously, the optimal 

protocol switching opportunity is at cross point C . However, before the pertaining degree 
decrease to 0 or increase to 1, the fuzzy area is also can be accepted. 
Theorem 1: The sum of the pertaining degrees always holds 

/0 ( ( ) ( )) 1CSMA CA TDMAx xµ µ< + ≤ .                                             (2) 
Proof: The performance gaps between CSMA/CA and TDMA varies with the load. Without regard to 
the cross point, the current suitable protocol can be defined as 
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According to the pertaining degree of candidate MAC protocols, one is more than 0.5 and 
the other one is less than 0.5. 

Therefore, the sum of pertaining degree must be satisfied (2). Theorem 1 is proved. 

4.2 Collection of the Data Set 
When formulating the protocol selection model, the key issue is to unfold the relationship 
between the decision-making criterion and the network features (i.e. external and internal). 
Therefore, data collection is essential for the learning process. In order to validate the 
proposed scheme, we use two kinds of data sets, i.e., the feature data set for training, and the 
test data set for evaluation (the detailed experimental settings are presented in Section 5). The 
two kinds of data sets have the same feature items, while they include different number of 
samples. It is also worth noting that the features item includes both parametric feature and 
statistics features. 

We selected 13 feature items to build data set. 6 of the 13 feature items in a data set are 
parametric features for protocol settings (i.e., protocol type, packet length, data rate, 
transmission inter-arrival time, transmit power, and node number). In addition, another 6 
feature items are statistic features for performance evaluation (i.e., average load, delay, 
average throughput, min throughput, max throughput, and standard deviation throughput). 
Moreover, the feature item ‘result’ corresponds to the classification result. The detailed 
interpretations are given as below: 

The 6 parametric features are general parameters for protocol settings, and they are widely 
adopted in many network simulation platforms, such as OPNET. 

1). protocol type: It usually represents a current behavioral MAC protocol of a node. 
2). packet length: It is not the size of the packet stored in the node's memory, but the 

modeled size for calculating transmission time, error probability, etc..  
3). data rate: It specifies the information rate over the data transmission channel.  
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4). transmission inter-arrival time: It represents the time interval between the two successive 
transmissions.  

5). transmit power: It specifies the power consumed by packet transmission.  
6). node number: It specifies the total number of nodes throughout the network. 
The 6 statistic features involves 3 kernel performance metrics (i.e., load, delay, and 

throughput). Among them, throughput is a most important performance metrics. Therefore, we 
select different calculation method to consider this statistic feature (i.e. average throughput, 
min and max throughput, and standard deviation throughput).  

1). delay: It represents the transmission delay of an individual packet from the source to the 
destination. 

2). average load: It represents the total traffic streams which have been transmitted. 
3). average throughput: It represents the average number of bits transmitted per second.  
4 & 5). min and max throughput: They describes the dynamic range of throughput.  
6). standard deviation throughput: The variance is to measure how far, on average, a given 

throughput is from the average throughput. The standard deviation is the square root of the 
variance. 

 
Table 1. Parametric Features 

Feature Description 

Protocol Type The protocol type which nodes are used in the current 
networks 

Packet Length Setting packet length in each simulation samples 
Data Rate Setting data rate in each simulation samples 

Inter-arrival 
Time Setting the time interval of packet arrival in each sample 

Transmit Power Setting transmit power in each sample 
Node Number Number of nodes in the current networks 

Result Classification result  
 
In this paper, as can be founded in Table 1, six condition parameters and the classification 

result are selected to form the parametric feature data set. The classification result is a Boolean 
variable, i.e., 0 or 1, to convey whether the MAC protocol should be modified to adapt to the 
current network. 

 
Table 2. Statistics Features 

Feature Description 
Average Load Sum of the average load in each independent sample 

Average 
Throughput 

Sum of the average throughput in each independent sample 

Delay Sum of the transmitting delay in each independent sample 
Min Throughput Sum of the minimum throughput in each independent sample 
Max Throughput Sum of the maximum throughput in each independent sample 

Stddev 
Throughput 

Sum of the throughput standard deviation in each independent 
sample 

Result Classification result 
 
After setting the parameters according to Table 1, we can obtain a series of statistical results. 

Six statistic parameters and the classification result are collected to form the statistic feature 
data set, which is summarized in Table 2. 
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Then, the two feature data sets are combined with multi-granule incremental knowledge 
gaining technique [28],[29], so as to obtain a robust MAC protocol classifier for learning. 

Definition 2: A MAC protocol selection system is defined as , , ,S U R V f=< > , where U  
stands for the sample feature data set,   R C D= ∪  is the union set of C  and D , where the set 
C  covers the feature attribute and the set D  specifies the classification result attribute, 
respectively,  {0, 1}D = . i r Ri rV V∈= ∪  is the set of attribute values that are related to sensor i , 

rV  indicates the value scope of the feature attribute ir R∈ . :i i if U R V× →  is the correlation 
function. 

Definition 3: In MAC protocol selection system , , ,S U R V f=< > , ( , )a v represents the 
feature item in the system, where a R v V∈ ∈, , named Feature Granular (FG). ( , )m a v denotes 
the collection of the samples value in U , where m  stands for the meaning function. 
(( , ), ( , ))a v m a v  is defined as a complete sample in the system S , named FG node. 
 

Algorithm1: Algorithm for determining the Feature Granular  
// Initialization  
1:  AP initializes FT 

// FG obtaining 
2:  Sensor i  transmits notification to AP 
3:  AP obtains parametric and statistics feature from the notification 
4:  for  1  i to n=  

5:     if FG newa a= ,match success 

6:        if FG newv v=   

7:          merge ( , )newa v  and ( , )FGa v  

8:        else , ,decision FG decision newv v≠   

9:          add newv  to FG node 

10:       end if 

10:     else match fail  

11：      then extend (( , ), ( , ))newa v m a v  to FT 

12:     end if 

13:  end 

14:  AP updates the FT and broadcasts selection result 
 
In order to speed up the searching process within the feature data set, we form a feature tree 

(FT) to quickly match the new samples. The FT is a tree-structured collection of FG samples 
according to the feature item. By this means, the FG can be searched along the tree 
layer-by-layer to find the leaf node corresponds to a certain sample value, named FG sub-node. 
In the FT, each layer is determined by a certain feature attribute ( )a a R∈ , each non-leaf node 
contains a feature item ( , )a v in which the attribute value v  only affects the sample size of 
attribute a . If a new arrival sample (( , ), ( , ))new news a v m a v=  matches with an existing FG 
feature item accurately, we merge the new sample with the granule and update the FT. In 
addition, if feature item value of news  is different from existing FG node that keep the same 
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feature item. The different attribute value should be added as a new sample. Otherwise, we 
extend a new sample to the tree as a new FG node. 

In the initialization phase, AP initializes its FT. In the FG obtaining phase, sensor i  first 
transmits notification to AP, from which AP obtains parametric and statistics features. Next, 
AP needs to determine whether news  matches with existing FG node. In specific, news  can 
successfully be matched with FG node if and only if they have the same condition and decision 
attribute values. Under such a condition, we merge them together. Otherwise, we should deal 
with the object as a conflicted FG node. Furthermore, if news  fails to match with the FG node, 
we should create it to be an individual FG node. This training process is repeated until the 
classification accuracy achieves an acceptable result. Finally, AP updates the FT and 
broadcast the MAC protocol selection result. The above discussion is summarized in 
Algorithm 1, where the multi-granule incremental knowledge gaining technique has been 
adopted to obtain FG. 

The computational complexity of Algorithm 1 is ' '
2

1
( ( 1) log ( 1))

m
i i
mr

i
O C U U

=

+ +∑ , where 'U  

is the number of successful matching, m  is the number of conflicted FG node reduction, and 
r  is the number of maximum values in condition attribute set. 

4.3 Selection of the Classifier 
The SMO algorithm is an upgrade of the SVM method, and this rapid quadratic programming 
optimization algorithm is a linear SVM suitable for sparse data. Similar to SVM, the 
classification function of SMO can be expressed as 

( ) Tf x w x b= + ,                                                            (4) 

where ( ) 0f x =  represents the hyper plane. w  is weighing vector. b  is a constant value. The 
two-class problem of the two support vector can be denoted by 

1
1

T

T

w x b
w x b
 + =


+ = −
.                                                            (5) 

If the symbols of Tw x b+  and class symbols of y  are consistent, classification result can be 
considered as correct. To enable represent the distance, we introduce the definitions of 
functional margin and geometrical margin. Function margin is represented by 

( ) ( )Ty w x b yf xγ
∧

= + = .                                                    (6) 

Geometrical margin is expressed as 
~

y
w
γγ γ
∧

= = .                                                              (7) 

where 
~
γ  is the geometrical margin which is the distance between a sample to the hyper plane. 

^
γ  is the function margin which is the minimum value of all samples ( , )i ix y  in the hyper plane 
( , )w b . y  is the class symbol (i.e. +1 or -1).  

For this classification problem, we need to maximize the margin to obtain a maximum 
margin classifier. The objective function can be 

1max ,   . .  ( ) 1, 1, ,T
i is t y w x b i n

w
+ ≥ =  .                                   (8) 
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which results in the following optimization problem: 

1 1 1

1

1min ( ) min ( , )
2

. .  0 , 1, ,

0

n n n

i j i j i j i
i j i

i
n

i i
i
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s t C i n

y

α α
α α α α

α

α

→

= = =

=

Ψ = −

≤ ≤ =

=

∑∑ ∑

∑

 .                               (9) 

In this process, the SMO algorithm selects two factors ia  and ja  for regulating in each 
iteration, while other factors remain unchanged. Compared to the conventional decomposition 
algorithms, SMO algorithm may involve a larger number of iterations. However, the 
computation in each iteration is relatively simple. In addition, the SMO algorithm does not 
need to store the kernel matrix, thus there are no matrix operations. 

It is worth mentioning that the linear inseparable problem should be solved by utilizing the 
kernel function. In order to solve the classification problem in the current space, we need to 
map the data to a high-dimensional space. The commonly used kernel functions are as follows: 

1 2 1 2

1 2 1 2
2 2

1 2 1 2

Po ( , ) ( , )
( , ) ,

lynomia

( , ) exp

lKernel
Linear Kernel

Gaussian Ke 2l ( )rne /

dK x x x x R
K x x x x

K x x x x σ

 = < > +
 =< >


= − −

：

：

：

.                           (10) 

With the varying proportion of data samples for training, the classification accuracy under 
different kernel functions is compared in Fig. 3. We select the ZeroR algorithm as the baseline. 
It can be found the performance achieved by the three SVM kernels is significantly better than 
the baseline. Moreover, the polynomial kernel outperforms the remaining two kernel functions. 
Thus we choose the polynomial kernel in the proposed classifier. 
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Fig. 3. Learning curve of different kernel function 

5. Evaluation 

5.1 Simulation Setup 
By combining parametric and the statistical feature data sets, a data set containing 13 features 
can be obtained and used for classifier learning. Each sample contains both parametric and 
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statistical features, and we vary the value of the parametric features, such as data package 
length (e.g. 100~1024 bytes), message transmitting rate (e.g. 1, 2, 5.5, 11 Mbps), interval time 
(e.g. 0.00001~0.01 seconds), transmit power (e.g. 0.001~1 W) and the node number (e.g. 5~30, 
It is incremented by 5 until it reaches 30). Some physical parameters are fixed, e.g., the direct 
sequence spectrum spreading technique is used in the physical layer, where the input Short 
Interframe Space (SIFS) and the DCF Interframe Space (DIFS) are respectively 10 sµ  and 
50 sµ  , the duration of a time slot is 20µs , min 31cw = , max 1023cw = .  

The classification result is obtained by comparing the samples with the saturation curve 
under the current network environment. If the pertaining degree of current MAC protocol 
holds 0.5xµ <（ ） , the classification result should be 0 and the protocol should be switched. 
Then, the feature data set is trained for classification, and to obtain the protocol selection 
model. We use the cross validation method with which to train the data set. The SMO 
algorithm with polynomial kernel is used to train the feature data set via 10-flod cross 
validation, and the weighted average PoCC is computed to evaluate the proposed MAC 
protocol selection model. According to the classification result, the network performance 
should be kept whether the network environment has been changed. 
In order to validate the MAC protocol selection model, the experiment is divided into two 
phases. In the first phase, we collected samples in the feature data set and built the MAC 
protocol classifier. 1000 simulation samples are collected from OPNET simulation to train the 
classifier, where half of the samples are collected under CSMA/CA protocol while the rest half 
are under TDMA protocol. The size of data set is explained by the following two 
considerations: 1) the classification result of classifier is acceptable; 2) there are finite samples 
trained in AP node. In the second phase, we collect individual samples in the test feature data 
set and evaluate the performance of the classifier. The above experiment settings are followed 
here and one hundred simulation samples are collected as a test data set to evaluate the 
classifier. The samples associated with CSMA/CA and TDMA equally split the set. The 
training data set is generated from OPNET simulation. After setting the parametric feature 
items in Table 1, statistic results are collected via simulations. We establish the range of the 
parametric features, while in each simulation, the concrete settings are randomly selected 
within the range. 

5.2 Evaluation of Classifier and Feature Contribution 
Simulation results indicate that the weighted average probability of correct classification 
(PoCC) obtained is 94%. In comparison, the corresponding baseline PoCC is 58%. The 
proposed protocol selection model surpasses the baseline in the given dynamic network 
environment. 

To enable evaluate the classifier, we test four conventional classification algorithms, i.e., 
NaiveBayes [31], J48 [30], SMO [32] and RandomForest [33]. We perform 10-flod cross 
validation on the feature data set. Each algorithm runs 10 times, and the PoCC shows in Fig. 4. 
(a). The results indicate that, PoCC of J48, NaiveBayes, SMO and RandomForest are 90%, 
94%, 94% and 96%, respectively. 
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(a) Correct classification probabilities (b) Time for model training  
Fig. 4. Comparison between different classifiers 

 
The time for model training is shown in Fig. 4. (b). RandomForest algorithm achieves the 

highest PoCC among the four algorithms, however, it takes 30ms to train the protocol 
selection model with 100 decision trees, which is much longer than the other schemes and 
make the algorithm less efficient. The J48 algorithm obtains an 11-node decision tree after 
pruning, where 6 of them are leaf nodes. This result indicates that J48 may be suffer from 
over-fitting and is not suitable for extending to other network environments. Moreover, the 
features within the data set selection in this paper are correlated to some degree. When 
removing the last four lowest information gain ranking features as shown in Table 3. The 
NaiveBayes algorithm becomes unstable. Therefore, we choose SMO algorithm to establish 
MAC protocol selection model in this paper. 
 

Table 3. Comparison between the simplification classifiers 
Algorithm Accuracy Time 
NaiveBayes 94%（86%↓） 2.2ms（1ms↓） 

J48 90%（90%-） 9.6ms（1.7ms↓） 
SMO 94%（92%↓） 7.3ms（4.6ms↓） 

RandomForest 96%（94%↓） 30ms （20ms↓） 
 
There are two main factors that affect the performance of the MAC protocol selection model, 

one is feature data set collection, and the other one is the classification algorithm that can 
match with the characteristics of the data set. In this paper, 13 feature items are selected based 
on the analysis of the MAC protocol and the network formulation. Among the features, the 
feature item ‘Result’ corresponds to the classification result, and the other 12 ones are treated 
as conditional features. The PoCC is somewhat acceptable, while it should be further noted 
that, these features contribute differently to the performance of the MAC protocol selection. 
Therefore, it makes sense to select a subset of the features that are essential for the MAC 
protocol. In order to fully cognize the feature information, we should identify the contributions 
of different features to the final PoCC. We use (11) to calculate the information gain of the 12 
conditional features in the feature set. The results are listed in Table 4. 
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Table 4. Information Gain Ranking of different features 
Rank Feature Information gain 

1 Stddev Throughput 0.596 
2 Packet Length 0.579 
3 Average Throughput 0.513 
4 Max Throughput 0.411 
5 Delay 0.305 
6 Average Load 0.232 
7 Inter-arrival Time 0.096 
8 Data Rate 0.037 
9 Node Number 0.011 
10 Transmit Power 0.007 
11 Min Throughput 0.00026 
12 Type 0.00008 

 
Form Table 4, the throughput, data package length and delay possess the highest 

information gain, which are directly correlated with the dynamic network. The ranking of 
different features indicates the requirement of different networks on the MAC protocol. 
Throughput refers to the amount of successfully-transmitted data. Maximizing the global 
throughput is a key object of the multiple access schemes. Delay refers to the time requirement 
for a packet to be transmitted successfully. Minimizing delay is a key performance metric for 
real-time traffic load. 

On the other hand, the two highly-ranked parametric features are “Packet Length” and 
“Inter-arrival Time”. The Table 4 also indicates that the information gains of the 8th to 12th 
features are much smaller than the others. As shown in Fig. 5, the information gain gradually 
decreases to 0. Thus, the feature set can be simplified by removing features with low 
information gain. It can be used to save the time resources when delay is an important figure of 
merit for the network. 
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Fig. 5. Information gain of different features 
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5.3 Evaluation of Throughput Feature Distribution 
Fig. 6 shows the distribution of the protocol type in the node number-throughput plane. 

Moreover, Fig. 7 shows the distribution of the classification result in the plane, where blue 
circles indicate that the current MAC protocol should be preserved, while red crosses indicate 
that the protocol need to switch. By comparing the results in Fig. 6 and Fig. 7, it can be found 
that both the CSMA/CA and TDMA protocols have some samples which require to switch 
current MAC protocol. Moreover, Fig. 7 shows that the more red crosses appear when the 
number of nodes is increased for the CSMA/CA protocol, the more blue circles are appeared 
for the TDMA protocol. The reasons can be as follows: 1) the traffic load becomes heavier 
when the number of node increases, and 2) more nodes will encounter more severe conflicts. 
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5.4 Evaluation of Traffic Load Feature Distribution 
This part verifies the classification performance of the proposed model. To use the high rank 

contribution of statistics features in Table 5 (i.e. “Throughput”, “Delay”, and “Average 
Load”), we compare the candidate MAC protocol network performance and feature 
distributions. We use the individual test data set to evaluate the classifier and observe the 
performance of our proposed protocol selection model. We set the number of the network 
node to 5, 10, 15, 20, 25 and 30, respectively, while the size of the data packet at 1000 bytes. 
According to the effects of different feature in Table 4, we select standard deviation 
throughput, delay, and average load to evaluate the classifier in Figs. 8-13 under different 
network sizes. More explicitly, Figs. 8-13 (a) and (b) represent the performance difference 
between CSMA/CA and TDMA, and Figs. 8-13 (c) and (d) show the distribution of the 
classification results of average load feature. 

First, in Fig. 8. (a) - Fig. 13. (a), and Fig. 8. (b) - Fig. 13. (b), we can observe that the 
performance of CSMA/CA is better than that of TDMA under the scenarios with 5, 10, and 15 
nodes, while it degrades dramatically when the number of nodes exceeds 20. We can roughly 
point out that CSMA/CA is more suitable when the network includes less than 20 nodes. 
Otherwise TDMA is a more suitable choice. The reason is that the competition becomes 
severer if adding more nodes to the network, which degrades the performance of CSMA/CA 
protocol. On the contrary, as TDMA is more suitable for heavy load scenarios, the relevant 
performance can be improved gradually when more nodes are operated in the network.  

Second, we can observer the classification result distributions in Fig. 8. (c) - Fig. 13. c), and 
Fig. 8. (d) - Fig. 13. (d). Fig. 8. (c) - Fig. 13. (c), and Fig. 8. (d) - Fig. 13. (d) show the 
distribution of the classification results of average load feature, where Fig. 8. (c) - Fig. 13. (c) 
represent the sample distributions of nodes which use CSMA/CA protocol, Fig. 8. (d) - Fig. 
13. (d) represent the sample distributions of nodes which use TDMA protocol. The blue circles 
and the red crosses comply with the definition in Fig. 7. In Fig. 8. (c) - Fig. 13. (c), when 
CSMCA/CA is adopted, the samples with “suitable” classification results are generally 
associated with light load. In Fig. 8. (d) - Fig. 13. (d), when TDMA is adopted, the samples 
with “suitable” classification result are generally associated with heavy load. By utilizing 
more nodes in simulations, the above distribution can be more evident. This is because TDMA 
will cause some redundant slots when the network stays in the light load scenario. However, 
CSMA/CA becomes not feasible when severer collisions are encountered in the heavy load 
scenario. Therefore, the protocol selection model can select the appropriate MAC protocol 
under different network loads. 
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(d)  
Fig. 8. Performance comparison between CSMA/CA and TDMA under 5 node scenarios.  
(a) throughput standard deviation. (b) delay. (c) CSMA/CA samples. (d) TDMA samples 
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(d)  
Fig. 9. Performance comparison between CSMA/CA and TDMA under 10 node scenarios. 
 (a) throughput standard deviation. (b) delay. (c) CSMA/CA samples. (d) TDMA samples 
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(d)  
Fig. 10. Performance comparison between CSMA/CA and TDMA under 15 node scenarios.  

(a) throughput standard deviation. (b) delay. (c) CSMA/CA samples. (d) TDMA samples 
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(d)  
Fig. 11. Performance comparison between CSMA/CA and TDMA under 20 node scenarios.  

(a) throughput standard deviation. (b) delay. (c) CSMA/CA samples. (d) TDMA samples 
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(d)  
Fig. 12. Performance comparison between CSMA/CA and TDMA under 25 node scenarios.  

(a) throughput standard deviation. (b) delay. (c) CSMA/CA samples. (d) TDMA samples 
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(d)  
Fig. 13. Performance comparison between CSMA/CA and TDMA under 30 node scenarios.  

(a) throughput standard deviation. (b) delay. (c) CSMA/CA samples. (d) TDMA samples 
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5.5 Distribution Behavior under Variable Performance Curve 
In this part, we fix the number of the network node to 10 and the size of the data packet to 

1000 bytes, and evaluate the load, i.e., the saturation curve of the throughput, of CSMA/CA 
and TDMA protocols in the network. To gain an explicit observation, we make a choice 
among the simulation result curves has been saturated, gradually and respectively. Sample 
distributions which around the saturation curves cross location of the two protocols are 
considered and shown in Fig. 14.  
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Fig. 14. Feature examples with Load-Throughput curve 

 
With our extending protocol selection criterion in section 4.1, CSMA/CA protocol samples 

are classified to be switched when the performance gaps between CSMA/CA and TDMA 
increase with the load. This is because the nodes face more conflicts, and thus CSMA/CA 
protocol becomes less efficient. TDMA protocol samples are classified to be switched when 
the performance gaps between CSMA/CA and TDMA decrease with the load. This is because 
the performance curve of TDMA protocol has not reached the saturation region, which implies 
most of the time slots are not utilized by the nodes. 

6. Conclusion 
In this paper, we present a MAC protocol selection model in wireless sensor networks. By 
employing the SMO classification approach, the selection model can help sensor nodes to 
select MAC protocol that best fits the current network environment. We proposed a two-stage 
classification framework to complete the MAC protocol selection task. In our method, the 
competitive CSMA/CA protocol and the non-competitive TDMA protocol served as 
candidates. To rapidly provide a robust classification result, a feature data set for training and 
a test data set for evaluating were respectively established. Moreover, we investigated the 
contribution of different features to the classification result in the protocol selection model. 
Simulation results show that, the proposed classification method can achieve the better PoCC, 
and the MAC protocol selection model had the capability to select the appropriate MAC 
protocol that best fit the current network environment. In the future work, we plan to 
generalize the MAC protocol selection model, relying on which a classifier can be designed 
and applied to deal with the MAC protocol selection problem when multiple protocol 
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candidates are included. 
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