• Title/Summary/Keyword: Application optimization

Search Result 2,005, Processing Time 0.026 seconds

Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

  • Soman, Rohan N.;Onoufrioua, Toula;Kyriakidesb, Marios A.;Votsisc, Renos A.;Chrysostomou, Christis Z.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2014
  • The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

Application of Numerical Optimization Technique to the Design of Fans (송풍기 설계를 위한 수치최적설계기법의 응용)

  • Kim, K.Y.;Choi, J.H.;Kim, T.J.;Rew, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.566-576
    • /
    • 1995
  • A Computational code has been developed in order to design axial fans by the numerical optimization techniques incorporated with flow analysis code solving three-dimensional Navier-Stokes equation. The steepest descent method and the conjugate gradient method are used to look for the search direction in the design space, and the golden section method is used for one-dimensional search. To solve the constrained optimization problem, sequential unconstrained minimization technique, SUMT, is used with imposed quadratic extended interior penalty functions. In the optimization of two-dimensional cascade design, the ratio of drag coefficient to lift coefficient is minimized by the design variables such as maximum thickness, maximum ordinate of camber and chord wise position of maximum ordinate. In the application of this numerical optimization technique to the design of an axial fan, the efficiency is maximized by the design variables related to the sweep angle distributed by quadratic function along the hub to tip of fan.

  • PDF

Optimization study of a clustering algorithm for cosmic-ray muon scattering tomography used in fast inspection

  • Hou, Linjun;Huo, Yonggang;Zuo, Wenming;Yao, Qingxu;Yang, Jianqing;Zhang, Quanhu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.208-215
    • /
    • 2021
  • Cosmic-ray muon scattering tomography (MST) technology is a new radiation imaging technology with unique advantages. As the performance of its image reconstruction algorithm has a crucial influence on the imaging quality, researches on this algorithm are of great significance to the development and application of this technology. In this paper, a fast inspection algorithm based on clustering analysis for the identification of the existence of nuclear materials is studied and optimized. Firstly, the principles of MST technology and a binned clustering algorithm were introduced, and then several simulation experiments were carried out using Geant4 toolkit to test the effects of exposure time, algorithm parameter, the size and structure of object on the performance of the algorithm. Based on these, we proposed two optimization methods for the clustering algorithm: the optimization of vertical distance coefficient and the displacement of sub-volumes. Finally, several sets of experiments were designed to validate the optimization effect, and the results showed that these two optimization methods could significantly enhance the distinguishing ability of the algorithm for different materials, help to obtain more details in practical applications, and was therefore of great importance to the development and application of the MST technology.

DEVELOPMENT OF AUTONOMOUS QoS BASED MULTICAST COMMUNICATION SYSTEM IN MANETS

  • Sarangi, Sanjaya Kumar;Panda, Mrutyunjaya
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.342-352
    • /
    • 2021
  • Multicast Routings is a big challenge due to limitations such as node power and bandwidth Mobile Ad-hoc Network (MANET). The path to be chosen from the source to the destination node requires protocols. Multicast protocols support group-oriented operations in a bandwidth-efficient way. While several protocols for multi-cast MANETs have been evolved, security remains a challenging problem. Consequently, MANET is required for high quality of service measures (QoS) such infrastructure and application to be identified. The goal of a MANETs QoS-aware protocol is to discover more optimal pathways between the network source/destination nodes and hence the QoS demands. It works by employing the optimization method to pick the route path with the emphasis on several QoS metrics. In this paper safe routing is guaranteed using the Secured Multicast Routing offered in MANET by utilizing the Ant Colony Optimization (ACO) technique to integrate the QOS-conscious route setup into the route selection. This implies that only the data transmission may select the way to meet the QoS limitations from source to destination. Furthermore, the track reliability is considered when selecting the best path between the source and destination nodes. For the optimization of the best path and its performance, the optimized algorithm called the micro artificial bee colony approach is chosen about the probabilistic ant routing technique.

An Empirical Data Driven Optimization Approach By Simulating Human Learning Processes (인간의 학습과정 시뮬레이션에 의한 경험적 데이터를 이용한 최적화 방법)

  • Kim Jinhwa
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.117-134
    • /
    • 2004
  • This study suggests a data driven optimization approach, which simulates the models of human learning processes from cognitive sciences. It shows how the human learning processes can be simulated and applied to solving combinatorial optimization problems. The main advantage of using this method is in applying it into problems, which are very difficult to simulate. 'Undecidable' problems are considered as best possible application areas for this suggested approach. The concept of an 'undecidable' problem is redefined. The learning models in human learning and decision-making related to combinatorial optimization in cognitive and neural sciences are designed, simulated, and implemented to solve an optimization problem. We call this approach 'SLO : simulated learning for optimization.' Two different versions of SLO have been designed: SLO with position & link matrix, and SLO with decomposition algorithm. The methods are tested for traveling salespersons problems to show how these approaches derive new solution empirically. The tests show that simulated learning for optimization produces new solutions with better performance empirically. Its performance, compared to other hill-climbing type methods, is relatively good.

Formulation of Seismic Drift Control Method (동적 변위 제어법의 정식화)

  • 박효선;박성무;권준혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.481-488
    • /
    • 1998
  • The drift and inter-story drift control method for steel structures subjected to seismic forces is formulated into a structural optimization problem in this paper. The formulated optimization problem with constraints on drift, inter-story drifts, and member strengthes are transformed into an unconstrained optimization problem. For the solution of the tranformed optimization problem an searching algorithm based on the gradient projection method utilizing gradient information on eigenvalues and eigenvectors are developed and presented in detail. The performance of the proposed algorithm is demonstrated by application to drift control of a verifying example.

  • PDF

Simulation Optimization with Statistical Selection Method

  • Kim, Ju-Mi
    • Management Science and Financial Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2007
  • I propose new combined randomized methods for global optimization problems. These methods are based on the Nested Partitions(NP) method, a useful method for simulation optimization which guarantees global optimal solution but has several shortcomings. To overcome these shortcomings I hired various statistical selection methods and combined with NP method. I first explain the NP method and statistical selection method. And after that I present a detail description of proposed new combined methods and show the results of an application. As well as, I show how these combined methods can be considered in case of computing budget limit problem.

Optimization Analysis of Trajectory for Re-Entry Vehicle Using Global Orthogonal Polynomial

  • Lee Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1557-1566
    • /
    • 2006
  • We present a procedure for the application of global orthogonal polynomial into an atmospheric re-entry maneuvering problem. This trajectory optimization is imbedded in a family of canonically parameterized optimal control problem. The optimal control problem is transcribed to nonlinear programming via global orthogonal polynomial and is solved a sparse nonlinear optimization algorithm. We analyze the optimal trajectories with respect to the performance of re-entry maneuver.

Application Core Mapping to Minimize the Network Latency on Regular NoC Architectures (규칙적인 NoC 구조에서의 네트워크 지연 시간 최소화를 위한 어플리케이션 코어 매핑 방법 연구)

  • Ahn, Jin-Ho;Kim, Hong-Sik;Kim, Hyun-Jin;Park, Young-Ho;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.117-123
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization(ACO)-based application core ma ins method for implementing network-on-chip(NoC)-based systems-on-chip(SoCs). The proposed method efficiently put application cores to a mesh-type NoC satisfying a given design objective, the network latency. Experimental results using a functional circuit including 12 cores show that the proposed algorithm can produce near optimal mapping results within a second.

Optimization of Tree-like Core Overlay in Hybrid-structured Application-layer Multicast

  • Weng, Jianguang;Zou, Xuelan;Wang, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3117-3132
    • /
    • 2012
  • The tree topology in multicast systems has high transmission efficiency, low latency, but poor resilience to node failures. In our work, some nodes are selected as backbone nodes to construct a tree-like core overlay. Backbone nodes are reliable enough and have strong upload capacity as well, which is helpful to overcome the shortcomings of tree topology. The core overlay is organized into a spanning tree while the whole overlay is of mesh-like topology. This paper focuses on improving the performance of the application-layer multicast overlay by optimizing the core overlay which is periodically adjusted with the proposed optimization algorithm. Our approach is to construct the overlay tree based on the out-degree weighted reliability where the reliability of a node is weighted by its upload bandwidth (out-degree). There is no illegal solution during the evolution which ensures the evolution efficiency. Simulation results show that the proposed approach greatly enhances the reliability of the tree-like core overlay systems and achieves shorter delay simultaneously. Its reliability performance is better than the reliability-first algorithm and its delay is very close to that of the degree-first algorithm. The complexity of the proposed algorithm is acceptable for application. Therefore the proposed approach is efficient for the topology optimization of a real multicast overlay.