Park, Sung-Wook;Kim, Jong-Shick;Lim, Su-Jin;HwangBo, Sea-Hee;Son, Joon-Ik;Lee, In-Yong;Wang, Bo-Hyeun
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.5
/
pp.638-644
/
2010
This paper presents ideas of service scenarios for home residents using electric power monitoring system per appliance, the implementation of the monitoring system, and analysis of acquired electric power usage pattern. By acquiring and analyzing electric power usage pattern, home residents can get information of power usage pattern of every legacy (non-Demand Response-ready) appliance. Further they can get pieces of recommendation how to reduce energy consumption, intelligent standby power blocking service, and alarming service to abnormality of appliances. In order to check the feasibility of the ideas, a system that can acquire electric power pattern per appliance is implemented, and electric power pattern of some appliances are stored to a database and it was analyzed to show if auto-identification of a type of a device is possible, which is a basic required function for the scenarios presented.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.1
/
pp.16-22
/
2016
This paper addresses the load usage scheduling in the HEMS for residential power consumers. The HEMS would lead the residential users to change their power usage, so as to minimize the cost in response to external information such as a time-varying electricity price, the outside temperature. However, there may be a consumer's inconvenience in the change of the power usage. In order to improve this, it is required to understand the pattern of load usage according to the external information. Therefore, this paper suggests a methodology to model the load usage pattern, which classifies home appliances according to external information affecting the load usage and models the usage pattern for each appliance based on a copula function representing the correlation between variables. The modeled pattern would be reflected as a constraint condition for an optimal load usage scheduling problem in HEMS. To explain an application of the methodology, a case study is performed on an electrical water heater (EWH) and an optimal load usage scheduling for EHW is performed based on the branch-and-bound method. From the case study, it is shown that the load usage pattern can contribute to an efficient power consumption.
Regarding demand response (DR) by residential users (R-users), the users try to reduce electricity costs by adjusting their power consumption in response to the time-varying price. However, their power consumption may be affected not only by the price, but also by user convenience for using appliances. This paper proposes a methodology for appliance scheduling (AS) that considers the user convenience based on historical data. The usage pattern for appliances is first modeled applying the copula function or clustering method to evaluate user convenience. As the modeling results, the comfort distribution or representative scenarios are obtained, and then used to formulate a discomfort index (DI) to assess the degree of the user convenience. An AS optimization problem is formulated in terms of cost and DI. In the case study, various AS tasks are performed depending on the weights for cost and DI. The results show that user convenience has significant impacts on AS. The proposed methodology can contribute to induce more DR participation from R-users by reflecting properly user convenience to AS problem.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.4
/
pp.407-413
/
2011
This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.
Journal of Dental Rehabilitation and Applied Science
/
v.34
no.1
/
pp.10-16
/
2018
Purpose: The purpose of this study was to evaluate distalizing effects from the Pendulum appliance on vertical component of craniofacial structures. Materials and Methods: 20 Patients who visited for orthodontic treatments are assigned to two groups. Group I, SN-MP > 37 degrees are showing hyperdivergent pattern. Group II, 29 < SN-MP < 37 degrees are showing mesocephalic pattern. Each group are consisted of 10 people. Results and Conclusions: Differences between skeletal classifications result in significant differences at labioversion of lower incisors and distalized amount, which is larger at Group I (P <.05). Group II has only shown significant distalized molars (P < .05). Labioversion of lower incisors has not shown significant change. Skeletal anchorage-assisted Pendulum appliance doesn't deteriorate vertical component nor significantly improve.
Recently, Smart Grid is a emerging topic in power and communication industry. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. In order to successful implementation of Smart Grid, energy management function will be the key factor that coordinates and optimally controls the various loads according to the operating condition and environments, and the load patterns in residential and commercial building will be required as fundamental element for load management. In this study, we collects many types of energy usage data of electric appliances, analyze their load curves, and make the general load patterns for electrical appliance.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.6
/
pp.1957-1980
/
2021
The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.
본 논문에서는 최근 발생되는 기상이변의 원인인 에너지의 과도한 사용을 감소시키기 위하여 사용자가 인지하지 못하는 동안 낭비되고 있는 대기전력을 자동으로 제어하는 시스템을 구현하였다. 현재 사용되고 있는 대기전력 제어 시스템의 경우 일정 전력 이하의 전력량이 감지되면 자동으로 차단하는 형태로 운영되고 있으나 재가동을 위해서는 사용자의 수동 제어에 의존해야 하는 불편함이 발생한다. 이에 본 논문은 사용하지 않는 가전기기의 대기전력을 차단할 뿐만 아니라 사용자의 편의성을 고려하여 자동으로 전력을 재공급하는 대기전력 컨트롤러를 구현한다. 기기의 전력 재공급은 각 사용자별 기기 사용패턴을 고려하여 구현하였으며, 이때 사용자의 구분은 2개의 Ultrasonic 센서로부터 산출된 사용자의 키와 무게 감지 센서로부터 산출된 사용자의 몸무게를 활용하였다.
Kim, Sung-Soo;Kang, Yong-Cheol;Nam, Soon-Ryul;Park, Jong-Keun;Myoung, Sung-Ho
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.5
/
pp.487-493
/
1999
To predict the background level of harmonics produced by household appliances, information on the site, capacity, and usage pattern of these loads arenecessary. However, as household appliances are distributed widely and various in type, it is difficult to know these kinds of information accurately. This paper presents a method for estimation of background level of harmonics produced by distributed harmonic sources with readily available data. Large industrial customers are excluded from this study. In this paper, customers are grouped into three classes, i.e. residential, commercial, and industrial. Typical customers for each class are assumed and characteristics of their equipments are modeled. As the proposed method does not require harmonic measurement, it can be employed to forecast voltage total harmonic distribution (VTHD) in the future. An illustrative example is described.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.4
no.4
/
pp.300-306
/
2011
In this paper, we suggest a usage profiles for electric home appliances. In Korea, it is published the records for total consumption of electricity in a house but the electric home appliance consumption records in a households are not. To build the data, we must collect the usage of every appliances in a house and the information of the household which live in the house. Unfortunately, it is hard to get the data because of the worry about the breach of privacy. In this paper, we make a scenarios on the electricity consumption pattern of a few households type. Based on the conjecture, we make the power consumption profiles for some home appliances. Comparison to the total electric consumption records for a house, we found our scenarios are quite reasonable.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.