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Abstract – Regarding demand response (DR) by residential users (R-users), the users try to reduce 
electricity costs by adjusting their power consumption in response to the time-varying price. However, 
their power consumption may be affected not only by the price, but also by user convenience for using 
appliances. This paper proposes a methodology for appliance scheduling (AS) that considers the user 
convenience based on historical data. The usage pattern for appliances is first modeled applying the 
copula function or clustering method to evaluate user convenience. As the modeling results, the 
comfort distribution or representative scenarios are obtained, and then used to formulate a discomfort 
index (DI) to assess the degree of the user convenience. An AS optimization problem is formulated in 
terms of cost and DI. In the case study, various AS tasks are performed depending on the weights for 
cost and DI. The results show that user convenience has significant impacts on AS. The proposed 
methodology can contribute to induce more DR participation from R-users by reflecting properly user 
convenience to AS problem. 
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1. Introduction 
 
In recent years, load management on the demand side 

has become more important. Load management initially 
focused on relatively large customers such as commercial 
and industrial users, because of the ease and high efficiency 
of their load management [1]. Smart grid technologies, 
which are based on the two-way exchange of electricity/ 
information, enable general end users to monitor and 
manage their power consumption. Various energy manage-
ment systems (EMSs) have been developed for different 
load management subjects, such as factories, buildings, 
and homes. With the development of a variety of smart 
appliances and a communication and control infrastructure, 
residential users (R-users) are expected to significantly 
contribute to load management in the near future [2-4]. 
Thus, this study focuses on load management by residential 
users through home EMS (HEMS). 

Various demand response (DR) programs have been 
developed for load management by R-users. DR 
programs commonly lead R-users to adjust their power 
consumption in response to external signals like the time-
varying price, incentives, and emergency requests for 
load reduction [5]. Among the various DR programs, the 
price-based DR (P-DR) induces voluntary and non-

compulsive DR participation through time-varying 
electricity prices [6-8]; schemes include the real-time 
price (RTP), critical peak price, inclining block rate, and 
time of use. Several studies have shown that RTP is more 
effective than other P-DR programs. However, it is 
difficult for R-users to monitor and control their power 
consumption in real time to RTP, and it can interfere with 
their DR participation [6, 9]. As one of the ways to 
resolve this problem, this paper considers the RTP which 
is announced before a day, named as day-ahead RTP 
(DARTP) [10-12]. Under DARTP, HEMS performs the 
appliance scheduling (AS) to establish a plan for using 
various appliances the next day. Then the HEMS notifies 
a result of the AS to the R-user through a communication 
interface. The AS result can be used as a guideline for 
using appliances or be reflected to the automatic control of 
appliances. 

Several researchers have studied residential P-DR [13-
17]; they mainly focused on minimizing the electricity 
costs by shifting the usage time or reducing the operation 
level of appliances within pre-specified ranges. However, 
the appliance usage by R-users may be influenced not only 
by the price, but also by other factors (i.e., the convenience 
for using appliances). For example, when shifting usage 
time of an appliance, some R-users may want to shift the 
usage time to more convenient times rather than times with 
low prices. Such R-users feel more convenience when 
using appliances at preferred times or operating level. 
Other several studies have dealt with residential P-DR 
considering user convenience [2,6,18-21]. However, they 
performed AS with certain operation ranges and preferred 
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conditions pre-set by the user and user convenience was 
simply considered by the difference between the pre-set 
conditions and the scheduling result. Such the way may 
cause another inconvenience in P-DR participation through 
the AS because the user should sometimes adjust directly 
the conditions for using appliances. Furthermore, it may 
not be sufficient for reflecting user’s preference for using 
appliances which can be influenced by the time-varying 
price or other factors. 

In order to improve the above problems, this paper 
proposes a methodology to perform AS considering user 
convenience without the direct input of preferred conditions 
by the R-users. For this purpose, this paper first presents a 
methodology to model user’s preferred conditions for the 
usage time or operating level, by applying a copula 
function or clustering method to the cumulative data. The 
comfort distribution or representative usage scenarios are 
obtained as the modeling results and used to formulate the 
degree of user convenience for major appliances as the 
discomfort index (DI). The AS problem is formulated in 
terms of cost and DI. In the case study, various AS tasks are 
performed to investigate the impacts of user convenience 
on the AS. 

 
 
2. Methodology for Modeling Usage Pattern of 

Appliance Usage 
 
In this paper, R-users are considered to be influenced by 

DARTP and other factors (e.g., outside temperature) when 
adjusting their appliance usage. The users would have their 
own usage patterns which involve their preference on the 
appliance usage. The closer a plan for the appliance usage 
is made to user’s usage pattern, the more the user would 
feel the convenience. In this section, a methodology for 
modeling the usage pattern is proposed based on the 
copula function or clustering method. The usage pattern is 
modeled for appliances of the following categories [9, 16, 
22]: 

Deferrable appliances (DAs): appliances of which usage 
time is determined depending on the electricity price, 
within available time ranges. Typical DAs include washing 
machines, dishwashers, and drying machines. 

Curtailable appliances (CAs): appliances of which on/ 
off status and power consumption are controlled within 
available operational ranges. As typical CAs, there are a 
heating, ventilation and air conditioning (HVAC), electric 
water heater (EWH), and energy storage system (ESS).  

 
2.1 Copula-based usage pattern modeling 

 
The usage pattern of DAs can be expressed as a 

numerical correlation between the usage times (i.e., the 
start and end times) and the time-varying price. The 
usage pattern of HVAC can also be expressed by the 
inside temperature to be maintained over time, and the 

outside temperature. Such numerical usage patterns can 
be modeled by applying a copula function [23-25]. 

The copula function is a way to identify the dependence 
between two or more random variables with individual 
distributions and represent it as a joint probability 
distribution. Among various copula functions, the Gaussian 
copula (GC) is used in this study: 

 
 1 1 1( ( ),..., ( )) ( ,..., )n n nGC x x x xf f f=   (1) 

 
where x  is a random variable that is the usage time for 
DAs or inside temperature for HVAC. f  is a standard 
normal distribution function. 

By applying ( )n n nx uf = , Eq. (1) can be rewritten as 
 

 1 1
1 1( ,..., ; ) ( ( ),..., ( ); )n n nGC u u Rho u u Rhof f f- -=   (2) 

 
where m is the variable normalized to the uniform 

distribution and 1f -  is an inverse function of a standard 
normal distribution. Rho  is the major parameter matrix 
for GC and can be obtained from a rank correlation 
coefficient such as Kendall’s t  or Spearman’s r : 

 

 sin 2sin
2 6

Rho tp rpæ ö æ ö= =ç ÷ ç ÷
è ø è ø

  (3) 

 
Fig. 1 shows the procedure of the GC-based modeling 

method, which is briefly explained by using HVAC. When 
modeling the usage pattern of HVAC, the inside 
temperature ( InTp ) is defined as the target variable, and the 
outside temperature ( OutTp ) is defined as the reference 
variable. The usage pattern is modeled as the dependence 
between InTp  and OutTp . By applying Eq. (3) to the 
cumulative data, the dependence between all the variables 
is estimated as the matrix Rho . If InTp  increases as 

OutTp  decreases, then Rho  consists of negative values. 
Conversely, Rho  has positive values. As the absolute 
value of Rho  comes closer to 1, InTp  can be regarded as 
influenced more significantly by OutTp . 

 

 

Fig. 1. Procedure of GC-based modeling 
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An appropriate number of sample data which have the 
dependence of the estimated Rho , can be generated by 
Eqs. (1) and (2). Fig. 2 shows the cumulative and sample 
data for (72)OutTp  and (76)InTp  among all variables 
(here, the time unit is 15 min.). Rho  of them has been 
estimated as -0.9498. 

Data corresponding to the reference variable, OutTp , 
among all sample data is compared with the forecasted one 
( FC

OutTp ) for the next day. By Eq. (4), only the sample data 
which contains the data of OutTp  similar to FC

OutTp , is 
extracted. Fig. 2(b) shows the extracted sample data for 

°(72) 3.2 CFC
OutTp = . 
 

 ( )2
| /SD FC

Out Out ES
t

i
iES SD Tp Tp T e

"

ì ü
= - £í ý
î þ

å  (4) 

 
where ES  is a set of the extracted sample data, SD  is 
sample data containing data of all variables, SD

OutTp  is data 
corresponding to reference variables, T  is the length of 
the entire time period, and ESe  is the permissible error. 

Fig. 3 shows the extracted sample data for InTp  and 

OutTp  during the entire time period, where lines represent 
the extracted sample data. The thick and dotted line is 

FC
OutTp , while the thicker lines represent OutTp  and InTp  of 

the most similar sample data to FC
OutTp . 

By counting the number of data of the extracted InTp  
for each time, the frequency distribution for each time is 
obtained. This is then converted to the comfort distribution 
through the normalization process. Fig. 4 shows the 
comfort distribution for (76)InTp , which indicates that the 
R-user has different preferences depending on InTp . 

 
2.2 Clustering-based usage pattern modeling 

 
The usage pattern of EWH is related to the hot water 

usage. Expressing when and how much hot water is used 
through any comfort distribution is difficult. Appliances, 
such as EWH can be modeled by a scenario-based 
approach applying a clustering method. Fig. 5 shows the 
procedure of K-clustering-based method for modeling the 
usage pattern. 

Among the cumulative data for the hot water usage, the 
similar data is grouped together by using Eq. (5) [26]. 

 

 
2

, 1
arg min ( ) ( )

i

k

j i KC
k S i j S t

t tq q e
= Î "

ì üï ï- £í ý
ï ïî þ
ååå  (5) 

 
where S  is the set of representative scenarios, k  is the 
number of groups, ( )j tq  is the data at time t (for an EWH, 
this is the quantity of heat for the used hot water), ( )i tq  is 
data corresponding to the centroid of the i-th group, and 

KCe  is the permissible error. The centroid of each group is 
defined as the representative scenario, and its probability is 
calculated as the ratio of the number of data in the group to 
the total cumulative data. 

 
 

3. Appliance Scheduling Formulation 
 
The AS problem can be expressed by an objective 

 

Fig. 2. Cumulative and sampling data generated by GC 
 

 

Fig. 3. Extracted sample data for 
InTp  and 

OutTp  

 

 

Fig. 4. Comfort distribution for (76)InTp  

 

Fig. 5. Procedure for clustering-based modeling 
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function which is formulated with two terms: the electricity 
cost, EC  and discomfort index, DI . 

 

 min
Min Min

EC DIMax Min Max Min

EC EC DI DIF
EC EC DI DI

w w- -
= ´ + ´

- -
  (6) 

 
where ECw  and DIw  are weighting factors. Depending on 
the weighting factors, diverse plans for using appliances 
can be established. EC  and DI  are normalized by their 
min/maximum values, respectively. Under conditions of 

1ECw = and 0DIw = , minEC and maxDI  can be calculated, 
and maxEC  and minDI  can be obtained under conditions 
of 0ECw =  and 1DIw = . 

 
3.1 AS Problem for DAs 

 
The electricity cost of DA, DAEC  is expressed by 
 

 ( ) ( )R
DA DA DA

t
EC t P tp m

"

= × ×å  (7) 

 
where p  is DARTP, R

DAP  is the rated power of DA, and 
DAm  is a status variable and is 0 or 1 depending on 

whether the DA is stopped or operating, respectively. 
By the copula-based method, the comfort distribution 

for DAs is obtained as in Fig. 6, where CI  is the comfort 
index normalized to have 1 as a maximum value. DI  is 
calculated by 1 CI- . DAta  and DAt b  indicate the available 
time range for using DA beyond the threshold. ,BF

DAta  and 
,BF

DAt b  represent the best fitted start and end times. 
DADI is evaluated considering both the comfort 

distribution and best fitted operating times. In Eq. (8), the 
first term means the average of inconvenience level during 
using DA and second term means the ratio of a difference 
between the scheduled and best fitted times for start and 
end times, to each possible time range, respectively [6]: 
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where DAg  is a weights between the two terms. DATask  
is the required operating time of DA and represented by Eq. 
(9). DAST  and DAET  are the scheduled start and end times 
and expressed by Eq. (10). 
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t
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"
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DAs are divided into types depending on the continuity 

of operation: non-interruptible (NDA) and interruptible 
(IDA). Once NDS start, they operate continuously until 

DATask  is satisfied. IDAs can be stopped and restarted 
sometimes until DATask  is satisfied. These constraints are 
represented by 

 

 

( )

( )

2
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where ( 1) 0DA DAtam - = , DANI  and DAdlt  are the number 
of times and the delay duration an IDA can be stopped 
during operation, respectively, and 1DA DA DAET ST dlt- + £ . 

 
3.2 AS Problem for HVAC 

 
The electricity cost of HVAC, HVACEC  is 
 

 ( ) ( )R
HVAC HVAC HVAC

t
EC t P tp m

"

= × ×å  (12) 

 
where R

HVACP  is the rated power of HVAC and HVACm  is a 
status variable and can have one of discrete values equally 
split within 0 and 1 to consider diverse operational states 
rather than a simple on/off operation. 

Fig. 7 shows the comfort distribution for InTp  at a 
certain time, where a

InTp  and InTpb  indicate the allowable 
range of InTp  at that time, and BF

InTp  is the best fitted one. 
 

 

Fig. 7. Comfort distribution for InTp  at a certain time t 

 

Fig. 6. Comfort distribution of DA 
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HVACDI  of HVAC can be calculated by Eq. (13), where 
the first term means total inconvenience level during using 
HVAC. The second term means the ratio of the difference 
between the scheduled and best fitted InTp  to its possible 
range. 

 
( )

2

1 ( ( )) (1 )
1

( ( ) ( ))
max{ ( ) ( ), ( ) ( )}

HVAC HVAC In HVAC

BF
HVAC In In

t BF BF
In In In In

CI Tp t

DI Tp t Tp t
T

Tp t Tp t Tp t Tp ta b

g g

"

ì ´ - + - ´ ü
ï ïï ïæ ö= -í ýç ÷ï ïç ÷- -ï ïè øî þ

å  

  (13) 
 
The dynamic equation for InTp  according to HVAC 

operation over time can be represented by [16, 27] 
 

( 1) ( )

( )
(1 ) ( )

In HVAC In

R
HVAC HVAC HVAC

HVAC Out
In

Tp t Tp t

CoP P t
Tp t

A

e

m
e

+ = ×

ì ü× ×
+ - ±í ý

î þ

   

  (14) 
 

where ( ) ( ) ( )In In InTp t Tp t Tp ta b£ £ , HVACe  is a heat emission 
constant, HVACCoP  is the coefficient of HVAC 
performance, and InA  is the thermal mass inside the room. 

 
3.3 AS Problem for EWH 

 
In the case of EWH, the hot water usage pattern is 

modeled as several representative scenarios. Therefore, the 
electricity cost of EWH, EWHEC  can be expressed as the 
expected cost for all scenarios: 

 

 ( ) ( )S S S
EWH EWH EWH

S t
EC t P t Pbp m

" "

ì ü= × × ×í ý
î þ

å å  (15) 

 
where R

EWHP  is the rated power of an EWH, S
EWHm  is a 

status variable under a scenario S  and can have one of 
several discrete values between 0 and 1. SPb  is the 
probability of the scenario S . 

Fig. 8 depicts the representative scenarios for the hot 
water usage expressed in terms of the quantity of heat. 

At first, AS for EWH is performed considering a 
scenario S . Then, the scheduling result is checked as 

regards whether the hot water demand of other scenarios 
( $S ) is met or not. If the hot water demand is not met, R-
user would feel inconvenience depending on the unmet 
demand. Under scenario S , the expected amount of the 
hot water demand unmet for other scenarios, S

EWHDI  can 
be expressed by (16) and (17): 

 

 
$ $

$

, ( )S S S S
EWH
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""
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  (17) 

 
where $S

HWQ  is the heat quantity of hot water used 
according to scenario $S , and $ ,S S

TkQ  is the heat quantity of 
water within a water tank, under the situation that R-user 
uses hot water in accordance with $S  but EWH operates 
according to S . $ ,S Snd  is the heat quantity of a shortfall in 
hot water within the tank under such the situation. 

The expected EWHDI  for all of the scenarios is 
 

 
S S

EWH EWH
S

DI DI Pb
"

= ×å  (18) 

 
The dynamic equation and constraint for $ ,S S

TkQ  can be 
expressed by [27] 

 

 

$ $ $

$

, ,

,

( 1) ( ) ( ) ( )

( ( ) )

S S S S S R S
Tk Tk HW EWH EWH EWH

S S
Tk Tk Out

Tk Tk

Q t Q t Q t CoP P t

A Q t Q
V R

m+ = - + × ×

× -
-

×

(19) 

 
where $ , ( )Min S S Max

Tk Tk TkQ Q t Q£ £ , EWHCoP  is the coefficient of 
the EWH performance and TkA , TkV , and TkR  are the 
cross-section area, volume, and thermal coefficient of 
resistivity, respectively, of the water tank. Min

TkQ  and Max
TkQ  

are the min/maximum limits for the heat quantity of hot 
water in the tank, respectively. 

 
3.4 AS Problem for ESS 

 
ESS is considered as an option to further reduce the 

electricity cost. The objective function for the ESS can be 
expressed by 

 

 
( )min ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

R
ESS Other ESS ESS

t

Other BA DA HVAC EWH
DA

F t P t P t

P t P t P t P t P t

p m
"

"

= ´ + ×

= + + +

å

å
  (20) 

 
Where BAP  is a total power consumption of basic 

appliances which are not the subject of AS, R
ESSP  is the 

rated power of ESS when charging or discharging power. 
ESSm  is a status variable with a discrete value between -1 

and 1; the positive values indicate a charging operation, 
whereas the negative values represent discharging. 

 

Fig. 8. Representative scenarios for hot water usage 
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The ESS operation is limited by the allowable range of 
the state of charge (SOC). This can be represented by 

 

 ( )

( )
( ) ( 1)

where  ( )

ESS

R
ESS ESS

ESS ESS tR
ESS ESS

Min Max
ESS ESS ESS

P t
SOC t SOC t

E

SOC SOC t SOC

m

m
h
×

= - +
×

£ £

 (21) 

 
where R

ESSE  is the rated energy capacity of the ESS, ESSh  
is the charging/discharging efficiency, and Min

ESSSOC  and 
Max
ESSSOC  are the min/maximum limits, respectively. 

 
 

4. Numerical Case Study 
 
Various AS tasks are performed according to ECw  and 

DIw  to investigate the impacts of user convenience on AS. 

The subject of AS consists of six DAs and HVAC, EWH, 
and ESS. Table 1 presents detailed information for the 
appliances, where 1DA , 2DA  and 3DA  mean the 1st , 2nd, 
and 3rd usage of a dishwasher during the day, respectively. 

4DA , 5DA , and 6DA  are a vacuum cleaner, a washing 
machine, and an electric laundry dryer. 

Fig. 9 shows the cumulative and forecasted DARTP with 
the unit of 1hour. Fig. 10 represents the cumulative and 
forecasted OutTp  and InTp  with the unit of 15 min. 

Because 3DA  is mainly used at late night, it is assumed 
to react only to DARTP. Therefore, its usage pattern is not 

Table 1. Detailed Information on Appliances 

DATask  DAdlt  DANI  
Appliances R

DAP  [kw] 
(the time unit : 15 min.) 

1DA  IDA [0.55, 0.55, 0.75, 0.75] 4 4 2 

2DA  IDA [0.55, 0.55, 0.75, 0.75] 4 4 2 

3DA  IDA [0.75, 0.75] 2 6 2 

4DA  NDA [1.2, 1.2] 2 0 1 

5DA  NDA [0.6, 0.6, 0.6, 0.75, 0.75] 5 0 1 

6DA  IDA [1.0, 1.0, 0.75, 0.75] 4 2 2 

HVAC 3.0kW, 0.95, 25, 1.2R
HVAC HVAC HVAC InP CoP Ae= = = =  

EWH 
2.0kW, 300, 8, 125,

12, 300, 2,500, 10,000

R
EWH EWH Tk Tk

Min Max
Tk out Tk Tk

P CoP A V

R Q Q Q

= = = =

= = = =
 

ESS 
1.2kW, 3.6kWh, 1.0,

1.8kWh, 1.0, 0.3

R R
ESS ESS ESS
Init Max Min
ESS ESS ESS

P E

E SOC SOC

h= = =

= = =
 

 

 

Fig. 9. Cumulative and forecasted DARTP 
 

 

Fig. 10. Cumulative data of 
OutTp  and 

InTp  

 

Fig. 11. Comfort distributions of DAs 
 

 

Fig. 12. Comfort distributions for 
InTp  

 

 

Fig. 13. Representative scenarios for hot water usage 
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modeled. Fig. 11 shows the modeling results for other five 
DAs together with their best fitted times. 

Fig. 12 shows the comfort distribution for InTp  over 
time together with the best fitted InTp .  

Fig. 13 shows the representative scenarios for the hot 
water usage obtained by the clustering-based method. 

In order to compare diverse results of AS depending on 
the weighting factors ECw  and DIw , several cases are 
defined: 

 
– Base Case: Focusing fully on economic efficiency (i.e., 

1.0, 0EC DIw w= = ). 
– Case I: Focusing fully on user convenience (i.e., 

0, 1.0EC DIw w= = ). 
– Case II: AS under condition of 0.75,ECw =  0.25DIw = . 
– Case III: AS under condition of 0.5, 0.5EC DIw w= = . 
–  Case IV: AS under condition of 0.25, 0.75EC DIw w= = . 

 
Each appliance may operate with more states than the 

two states (i.e., ‘on and off’). The AS problem is to 
determine the status variables, m  of each appliance over 
the entire time period and is solved based on the branch 
and bound method (B&B) [28], in this paper. 

Table 2 presents the AS results for all DAs. In Base Case, 
individual DAs operate during times with low electricity 
prices within the respective allowable time ranges. As 
increases, the operating time moves to more convenient 
times (i.e., times closer to the modeled usage pattern). 

Figs. 14 and 15 show the AS results for HVAC in the 
Base Case and Case I. In the Base Case, HVAC operates 
less frequently but with a higher power when operating to 
satisfy InTp  of the minimum level and to minimize the 
cost. Thus, HVACEC  is $2.525, while HVACDI  is 0.9461. 
Meanwhile, in Case I, the HVAC operates more frequently 
with a lower power to maximize the level of convenience 
of the R-user. As a result, HVACEC  increases to $2.945, 

while HVACDI  decreases to 0.0979. 
Table 3 presents the numerical AS results of HVAC for 

all cases, where HVACEC  increases as the user convenience 
for HVAC is more weighted. 

Fig. 16 shows the AS results for the EWH in the Base 
Case and Case I, where thick lines represent the power 
consumption of EWH over time and the dotted lines denote 
the quantities of heat for hot water in the tank.  

Compared with the Base Case, EWH operates more 
frequently in Case I to keep water in the tank at a higher 

TkQ  for preparing for various scenarios of the hot water 

Table 2. AS Results for DAs 

 

 

 

Fig. 14. Results of AS for HVAC in Base Case and Case I 
 

 

Fig. 15. Results of InTp  in Base Case and Case I 
 

 

Fig. 16. Results of AS for EWH 
 

Table 3. Numerical Results for HVAC and EWH 

Cases ECw  HVACEC  HVACDI  EWHEC  EWHDI  
Base 1 2.525 0.946 1.674 3284.896 

I 0.75 2.762 0.146 1.778 1051.624 
II 0.5 2.863 0.109 1.843 730.122 
III 0.25 2.924 0.099 1.980 201.201 
IV 0 2.944 0.098 2.090 45.105 
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usage. Table 3 also presents the numerical results of EWH 
in detail, where the tradeoff between EWHEC  and EWHDI  
can be observed. 

Fig. 17 shows the final results of AS for DAs, HVAC, 
and EWH. In the Base Case, the appliances intermittently 
operate, but generally consume more power when the 
electricity price is low. Consequently, the total electricity 
cost is $4.707. However, the results of Cases I and II show 
that power consumption is slightly less but more frequent 
to improve the convenience. As a result, the total power 
consumption is increased. Moreover, the total costs 
increase to $5.217 and $5.552, respectively. 

The electricity cost for the three cases when considering 
ESS are reduced to $4.676, $5.186, and $5.520, 
respectively. However, the peak load for all the cases 
increase because the ESS is mainly charged at times with 
low prices. From Fig. 18, it can be seen that the impacts of 
user convenience on AS is similar to the previous results 
shown in Fig. 17 because the ESS is only used for the cost 
reduction. Therefore, even when considering ESS, it can be 
again confirmed that the user convenience should be 
considered in performing AS for P-DR. 

 
 

5. Conclusion 
 
This paper proposes a methodology for AS that reflects 

user convenience based on the usage pattern. Two methods 
are introduced to model the usage patterns: a copula-based 
method for DAs and HVAC, and a clustering-based method 
for EWH. Based on the results of the usage pattern 

modeling, the discomfort index, DI is formulated to 
evaluate the degree of user convenience for using 
appliances. The AS problem are expressed by two terms of 
cost and DI. In the case study, various AS tasks are 
performed according to two weighting factors for cost 
and DI. The results show that the user convenience 
significantly affects AS, and R-user can make a variety of 
plans for using appliances the next day depending on the 
relative importance of user convenience to cost. However, 
a major issue remains, which is the decision-making 
problem to select the most preferred one among the diverse 
schedules. A follow-up study for the decision-making 
problem are conducting and the proposed methodology 
would contribute to induce more usefully P-DR 
participation from R-users. 
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