• Title/Summary/Keyword: Apple stem grooving virus

Search Result 28, Processing Time 0.029 seconds

Production System of Virus-free Apple Plants Using Heat Treatment and Shoot Tip Culture (열처리와 경정배양을 이용한 바이러스 무병 사과 생산 시스템)

  • Lee, Gunsup;Kim, Jeong Hee;Kim, Hyun Ran;Shin, Il Sheob;Cho, Kang Hee;Kim, Se Hee;Shin, Juhee;Kim, Dae Hyun
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 2013
  • In worldwide, viral diseases of apple plants has caused the serious problems like reduced production and malformation of fruits. Also, the damages of apple plants by virus and/or viroid infection (Apple chlorotic leaf spot virus, Apple stem grooving virus, Apple mosaic virus, and Apple scar skin viroid) were reported in Korea. However there is few report about the protection approach against the infection by apple viruses. Therefore, this paper introduced the experimental protocol for the development of virus-free apple cultivars (Danhong, Hongan, Saenara, Summerdream). Apple plants were treated at $37^{\circ}C$ for 4 weeks and shoot tips were cultured in vitro. After heat treatment, the detection of apple viruses was performed by RT-PCR using virusspecific detection primers in new apple cultivars. With the heat treatments followed by in vitro shoot tip culture, the proportion of virus-free stocks of 'Danhong', 'Hongan', 'Saenara', and 'Summerdream' was 28%, 16%, 12%, and 12%, respectively. Taken together, this approach can be a good tool for production of virus-free apple stocks.

Molecular Characterization of Apple stem grooving virus Isolated from Talaromyces flavus

  • Shim Hye-Kyung;Hwang Kyu-Hyon;Shim Chang-Ki;Son Su-Wan;Kim Dong-Giun;Choi Yong-Mun;Chung Young-Jae;Kim Dae-Hyun;Jee Hyeong-Jin;Lee Suk-Chan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.260-264
    • /
    • 2006
  • Talaromyces flavus mediates the transmission of Apple stem grooving virus (ASGV) to several host plants. The ASGV-F carried by T.flavus was partially purified from the fungus. Based on sequence analysis and homology searches, this is closely related to other ASGV strains isolated from host plants. The partially purified viral coat protein (CP) was separated on a 12% SDS-polyacrylamide gel and analyzed by Western blotting with an ASGV anti-serum. A single band at 28 kDa reacted with the ASGV anti-serum. The deduced amino acid sequence of the ORF-l showed conserved domains, including an NTP-binding helicase motif, GFAGSGKT. The amino acid sequences of the helicase and CP showed strong homology to other ASGV strains (98%). All ASGV isolated from plants and fungi had salt bridges composed of the CP and the GFAGSGKT motif of the helicase, which are commonly conserved in plant viruses. These results suggest that ASGV-F is one of ASGV strains isolated from T.flavus based on sequence similarity as well as the serological analysis of CP.

Ecopathological Analysis of Apple stem grooving virus-K Harboring Talaromyces flavus

  • Shim Hye-Kyung;Hwang Kyu-Hyon;Shim Chang-Ki;Hong Seung-Beom;Son Su-Wan;Kim Dong-Giun;Choi Yong-Mun;Chung Young-Jae;Kim Dae-Hyun;Jee Hyeong-Jin;Lee Suk-Chan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • Pear black necrotic leaf spot (PBNLS) on pear trees (Pyrus pyrifolia) is caused by a Korean isolate of Apple stem grooving virus (ASGV-K). Yellow spots were detected in Phaseolus vulgaris (kidney bean) and Chenopodium quinoa which were grown near the diseased pears in year 2000 through 2003. The ASGV-K, the causative agent of PBNLS, was detected from the symptoms of the diseased kidney bean plant and C. quinoa. ASGV-harboring fungi were also isolated from symptomatic plants and from soils surrounding the infected plants. The ASGV-harboring fungus was identified and characterized as Talaromyces flavus. Ecopathological studies showed that the number of ASGV-harboring fungi on the pear leaves was not correlated with differences in temperature or severity of symptoms. Additionally, there was no difference in fungus frequency among the orchard locations or different host plants. Although the frequency of fungi isolated from the soil was not affected by changes in temperature or location, the fungi occurred at higher densities in the rhizosphere than in the plants themselves.

Virus Detection of Dwarfing Rootstock and Scion in Major Commercial Apple Cultivars (국내 유통 주요 사과 품종 왜성대목 및 접수의 바이러스 검정)

  • Huh, Yoon Sun;Lee, Joung Kwan;Park, Jae Seong;Yoon, Yeo Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.52-52
    • /
    • 2018
  • Apple (Malus domestica) is one of the most economically important fruits in Korea. But virus infection has decreased sustainable production of apple and caused the serious problems such as yield loss and poor fruit quality. Virus or viroid infection including Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple mosaic virus (ApMV) and Apple scar skin viroid (ASSVd) has been also reported in Korea, furthermore, its damages and economic losses have increased constantly. In our research, we tried to survey virus infection for commercial nursery trees of major apple cultivars, especially dwarfing rootstocks 'M.9' and 'M.26' as well as scions. Trees were collected from 11 locations which have produced a great amount of apple nursery stocks in Korea. Infection degree was investigated in apple cultivars, 'Hongro' and 'Fuji' using RT-PCR method. In the scion of cultivar 'Hongro', infection ratio of ACLSV, ASPV and ASGV were 100%, 81.8% and 100% respectively. In the rootstock of cultivar 'Hongro', infection ratio of ACLSV, ASPV, ASGV and ApMV were 90.9%, 81.8%, 100% and 9.1% respectively. In the scion of cultivar 'Fuji', infection ratio of ACLSV, ASPV and ASGV were 81.8%, 90.9% and 100% respectively. In the rootstock of cultivar 'Fuji', infection ratio of ACLSV, ASPV, ASGV and ApMV were 81.8%, 90.9%, 100% and 9.1% respectively. Infection of ASSVd was not detected in both cultivars. From our results, it was found that most of apple rootstocks and scions had multiple infections by apple viruses which have caused economic damage in fruit production.

  • PDF

Detection of Apple Scar Skin Viroid by Reverse Transcription Recombinase Polymerase Amplification Assay

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Cho, In-Sook;Ju, Ho-Jong;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.79-83
    • /
    • 2021
  • The aim of the present study was to develop a sensitive and specific detection method for the rapid detection of apple scar skin viroid (ASSVd) in apple leaves. The resulting reverse transcription recombinase polymerase amplification (RT-RPA) assay can be completed in 10 min at 42℃, is 10 times more sensitive than conventional reverse transcription polymerase chain reaction, and can specifically amplify ASSVd without any cross-reactivity with other common apple viruses, including apple stem grooving virus, apple stem pitting virus, and apple chlorotic leaf spot virus. The reliability of the RT-RPA assay was assessed, and the findings suggested that it can be successfully utilized to detect ASSVd in field-collected samples. The RT-RPA assay developed in the present study provides a potentially valuable means for improving the detection of ASSVd in viroid-free certification programs, especially in resource-limited conditions.

Efficient virus elimination for apple dwarfing rootstock M.9 and M.26 via thermotherapy, ribavirin and apical meristem culture (사과 왜성대목 M.9 및 M.26의 고온, ribavirin, 생장점 배양을 통한 바이러스 제거)

  • Kwon, Young Hee;Lee, Joung Kwan;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Huh, Yoon Sun;Park, Eui Kwang;Yoon, Yeo Joong
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.228-235
    • /
    • 2019
  • Apple (Malus pumila) is one of the most economically important fruits in Korea. but virus infection has decreased the sustainable production of apples and caused serious problems such as yield loss and poor fruit quality. Virus or viroid infection including apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple mosaic virus (ApMV) and apple scar skin viroid (ASSVd) have been also reported in Korea. In many cases, as apple gets infected with virus and viroid with no specific symptoms, the damage and symptoms caused by the viruses are not detected. In our research, viruses in the rootstock were eliminated for a virus-free apple dwarfing rootstock of M.9 and M.26. The virus elimination methods were apical meristem culture, thermotherapy ($37^{\circ}C$, 6 weeks) and chemotherapy($Ribavirin^{(R)}$). The detection of apple viruses was accomplished by Enzyme-linked Immuno-Sorbent Assay (ELlSA) and reverse transcription-polymerase chain reaction (RT-PCR). RT- PCR method was 10 ~ 30% more sensitive than the ELISA method. The efficiency of virus elimination was enhanced in apical meristem culture method. The acquisition rate of virus-free apple dwarfing rootstocks was 30 ~ 40% higher in apical meristem culture. After the meristem culturing of M.9, the infection ratio of ACLSV, ASPV and ASGV was 45%, 60% and 50%, respectively. In the apple dwarfing rootstock of M.26, the infection ratio of ACLSV, ASPV and ASGV was 40%, 55% and 55%, respectively. Based on this study, the best method for the production of virus-free apple dwarfing rootstocks was the apical meristem culture.

Identification of Plant Viruses Infecting Pear Using RNA Sequencing

  • Kim, Nam-Yeon;Lee, Hyo-Jeong;Kim, Hong-Sup;Lee, Su-Heon;Moon, Jae-Sun;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.258-267
    • /
    • 2021
  • Asian pear (Pyrus pyrifolia) is a widely cultivated and commercially important fruit crop, which is occasionally subject to severe economic losses due to latent viral infections. Thus, the aim of the present study was to examine and provide a comprehensive overview of virus populations infecting a major pear cultivar ('Singo') in Korea. From June 2017 to October 2019, leaf samples (n = 110) of pear trees from 35 orchards in five major pear-producing regions were collected and subjected to RNA sequencing. Most virus-associated contigs matched the sequences of known viruses, including apple stem grooving virus (ASGV) and apple stem pitting virus (ASPV). However, some contigs matched the sequences of apple green crinkle-associated virus and cucumber mosaic virus. In addition, three complete or nearly complete genomes were constructed based on transcriptome data and subjected to phylogenetic analyses. Based on the number of virus-associated reads, ASGV and ASPV were identified as the dominant viruses of 'Singo.' The present study describes the virome of a major pear cultivar in Korea, and looks into the diversity of viral communities in this cultivar. This study can provide valuable information on the complexity of genetic variability of viruses infecting pear trees.

Improvement of RT-PCR Sensitivity for Fruit Tree Viruses by Small-scale dsRNA Extraction and Sodium Sulfite

  • Lee, Sin-Ho;Kim, Hyun-Ran;Kim, Jae-Hyun;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.142-146
    • /
    • 2004
  • Woody plant tissues contain great amounts of phenolic compounds and polysaccharides. These substances inhibit the activation of reverse transcriptase and/or Taq polymerase in RT-PCR. The commonly used multiple-step protocols using several additives to diminish polyphenolic compounds during nucleic acid extraction are time consuming and laborious. In this study, sodium sulfite was evaluated as an additive for nucleic acid extraction from woody plants and the efficiency of RT-PCR assay of commercial nucleic acid extraction kits and small-scale dsRNA extraction was compared. Sodium sulfite was used as an inhibitor against polyphenolic oxidases and its effects were compared in RNA extraction by commercial extraction kit and small-scale double-stranded RNA (dsRNA) extraction method for RT-PCR. During nucleic acid extraction, addition of 0.5%-1.5%(w/v) of sodium sulfite to lysis buffer or STE buffer resulted in lighter browning by oxidation than extracts without sodium sulfite and improved the RT-PCR detection. When commercial RNA extraction kit was used, optimal concentrations of sodium sulfite were variable according to the tested plant. However, with dsRNA as RT-PCR template, sodium sulfite 1.5% in STE buffer improved the detection efficiency of Apple chlorotic leaf spot virus (ACLSV) and Apple stem grooving virus (ASGV) in fruit trees, and reduced the unspecific amplifications signi-ficantly. Furthermore, when viruses existed at low titers in host plant, small-scale dsRNA extractions were very reliable.

Deep Sequencing Analysis of Apple Infecting Viruses in Korea

  • Cho, In-Sook;Igori, Davaajargal;Lim, Seungmo;Choi, Gug-Seoun;Hammond, John;Lim, Hyoun-Sub;Moon, Jae Sun
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.441-451
    • /
    • 2016
  • Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time.

Metatranscriptomic Analysis of Plant Viruses in Imported Pear and Kiwifruit Pollen

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.220-228
    • /
    • 2022
  • Pollen is a vector for viral transmission. Pollenmediated viruses cause serious economic losses in the fruit industry. Despite the commercial importance of pollen-associated viruses, the diversity of such viruses is yet to be fully explored. In this study, we performed metatranscriptomic analyses using RNA sequencing to investigate the viral diversity in imported apple and kiwifruit pollen. We identified 665 virus-associated contigs, which corresponded to four different virus species. We identified one virus, the apple stem grooving virus, from pear pollen and three viruses, including citrus leaf blotch virus, cucumber mosaic virus, and lychnis mottle virus in kiwifruit pollen. The assembled viral genome sequences were analyzed to determine phylogenetic relationships. These findings will expand our knowledge of the virosphere in fruit pollen and lead to appropriate management of international pollen trade. However, the pathogenic mechanisms of pollen-associated viruses in fruit trees should be further investigated.