• 제목/요약/키워드: Appell's hypergeometric functions

검색결과 26건 처리시간 0.017초

FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS

  • Agarwal, Praveen;Choi, Junesang
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1183-1210
    • /
    • 2016
  • During the past four decades or so, due mainly to a wide range of applications from natural sciences to social sciences, the so-called fractional calculus has attracted an enormous attention of a large number of researchers. Many fractional calculus operators, especially, involving various special functions, have been extensively investigated and widely applied. Here, in this paper, in a systematic manner, we aim to establish certain image formulas of various fractional integral operators involving diverse types of generalized hypergeometric functions, which are mainly expressed in terms of Hadamard product. Some interesting special cases of our main results are also considered and relevant connections of some results presented here with those earlier ones are also pointed out.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

A NOTE ON CERTAIN TRANSFORMATION FORMULAS RELATED TO APPELL, HORN AND KAMPÉ DE FÉRIET FUNCTIONS

  • Asmaa Orabi Mohammed;Medhat Ahmed Rakha;Arjun K. Rathie
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.807-819
    • /
    • 2023
  • In 2019, Mathur and Solanki [7, 8] obtained a few transformation formulas for Appell, Horn and the Kampé de Fériet functions. Unfortunately, some of the results are well-known and very old results in literature while others are erroneous. Thus the aim of this note is to provide the results in corrected forms and some of the results have been written in more compact form.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE

  • Kim, Yong-Sup;Hasanov, Anvar;Lee, Chang-Hyun
    • 호남수학학술지
    • /
    • 제32권4호
    • /
    • pp.581-592
    • /
    • 2010
  • With the help of some techniques based upon certain inverse pairs of symbolic operators initiated by Burchnall-Chaundy, the authors investigate decomposition formulas associated with Saran's function $F_E$ in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By employing their decomposition formulas, we also present a new group of integral representations for the Saran function $F_E$.

ON FINITE SUMMATION FORMULAE FOR THE H-FUNCTION OF TWO VARIABLES

  • Gupta, K.C.;Garg, O.P.
    • Kyungpook Mathematical Journal
    • /
    • 제18권2호
    • /
    • pp.211-215
    • /
    • 1978
  • In the present paper, we obtain two new and interesting finite summation formulae for the H-function of two variables in a very neat and elegant form. The novel feature of the paper is that the method used here in deriving these formulae is simple and direct and does not impose heavy restrictions on the parameters involved. On account of the most general nature of the H-function of two variables, a number of related finite summation formulae for a number of other useful functions can also be obtained as special cases of our results. As an illustration, we have obtained here from our main results, the corresponding finite summation formulae for $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function. Appell's function and Gauss' hypergeometric function which are also believed to be new.

  • PDF