• Title/Summary/Keyword: Appearance-Based Recognition

Search Result 147, Processing Time 0.024 seconds

지능형 로봇 구동을 위한 제스처 인식 기술 동향 (Survey: Gesture Recognition Techniques for Intelligent Robot)

  • 오재용;이칠우
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.771-778
    • /
    • 2004
  • Recently, various applications of robot system become more popular in accordance with rapid development of computer hardware/software, artificial intelligence, and automatic control technology. Formerly robots mainly have been used in industrial field, however, nowadays it is said that the robot will do an important role in the home service application. To make the robot more useful, we require further researches on implementation of natural communication method between the human and the robot system, and autonomous behavior generation. The gesture recognition technique is one of the most convenient methods for natural human-robot interaction, so it is to be solved for implementation of intelligent robot system. In this paper, we describe the state-of-the-art of advanced gesture recognition technologies for intelligent robots according to three methods; sensor based method, feature based method, appearance based method, and 3D model based method. And we also discuss some problems and real applications in the research field.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

2차원 PCA 얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on 2D PCA Face Distinctive Identity Feature Subspace Model)

  • 설태인;정선태;김상훈;장언동;조성원
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.35-43
    • /
    • 2010
  • 고유얼굴 기반 얼굴 인식 방법과 같은 얼굴 형태 기반 얼굴 인식 방법에 사용되는 1차원 PCA는 고차원의 얼굴 형태 데이터 벡터들의 처리로 인하여 부정확한 얼굴 표현과 과도한 계산량을 초래할 수 있다. 이에 개선 방안의 하나로 2차원 PCA 기반 얼굴 인식 방법이 개발되었다. 그러나 단순한 2차원 PCA 적용으로 얻어진 얼굴 표현 모델에는 얼굴 공통 특성 성분과 개인 식별 특성 성분이 모두 포함된다. 얼굴 공통 특성 성분은 오히려 개인 식별 능력을 방해할 수가 있고 또한 인식 처리 시간의 증가를 초래한다. 본 논문에서는 2차원 PCA 적용으로 얻어진 얼굴 특성 공간에서 얼굴 공통 특성 영향이 분리된 얼굴 고유 식별 특성 부분공간 모델을 개발하고 개발된 모델에 기반한 새로운 강인한 얼굴 인식 방법을 제안한다. 제안한 얼굴 고유식별 특성 부분공간 모델 기반 얼굴 인식 방법은 얼굴 고유 식별 특성에만 주로 의존하기 때문에 기존 1차원 PCA 및 2차원 PCA 기반 얼굴 인식 방법보다 얼굴 인식 성능 및 인식 속도에 대해서 더 우수한 성능을 보인다. 이는 다양한 조명 조건하에 다양한 얼굴 자세를 갖는 얼굴 이미지들로 구성된 Yale A 및 IMM 얼굴 데이터베이스를 이용한 실험을 통해 확인하였다.

통계적 형상 기반의 얼굴인식을 위한 가변얼굴템플릿 생성방법 (A Method of Generating Changeable Face Template for Statistical Appearance-Based Face Recognition)

  • 이철한;정민이;김종선;최정윤;김재희
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.27-36
    • /
    • 2007
  • 가변생체인식(Changeable Biometrics)이란 생체정보의 도난이나 도용 시 개인의 프라이버시를 보호하기 위해 원 생체정보를 사용하지 않고, 생체정보를 변환하여 변환된 생체정보로 개인을 인증하는 방법이다. 본 논문은 통계적 형상 기반의 얼굴인식(Statistical appearance based face recognition)에 적용될 수 있는 가변얼굴템플릿 생성 방법에 대해 제안한다. 상이한 두 개의 통계적 형상 기반의 얼굴특징 방법을 이용하여 두 개의 얼굴특징벡터를 추출하고, 추출된 두 개의 얼굴특징벡터를 정규화 후 각 특징벡터들의 요소의 순서를 재배열 시킨다. 가변얼굴템플릿은 정규화 되고 순서가 재배열된 특징벡터들의 가중 합으로 생성된다. 두 개의 서로 다른 얼굴특징벡터의 가중 합으로 하나의 가변얼굴템플릿을 생성하므로, 가중 합의 방법과 생성된 가변얼굴템플릿을 알더라도 원 얼굴 특징벡터를 복원할 수 없다. 또한, 생성된 가변얼굴템플릿의 도난 시 새로운 가변얼굴템플릿의 생성은 각 벡터의 순서를 재배열시키는 규칙을 변경함으로써 가능하다. 그러므로 제안한 가변얼굴템플릿을 이용하여 개인 인증 시, 개인의 얼굴템플릿을 도난당하더라도 원 얼굴특징정보를 복원 할 수 없고 또한 새로운 가변얼굴템플릿으로 대체 할 수 있어 생체정보의 도난 시 발생할 수 있는 프라이버시 침해의 문제를 해결 할 수 있다. 제안한 방법은 AR-face DB를 이용하여 성능과 보안성에 대해 평가하였다.

Multiple Human Recognition for Networked Camera based Interactive Control in IoT Space

  • Jin, Taeseok
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.39-45
    • /
    • 2019
  • We propose an active color model based method for tracking motions of multiple human using a networked multiple-camera system in IoT space as a human-robot coexistent system. An IoT space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of IoT space as well. One of the main goals of IoT space is to assist humans and to do different services for them. In order to be capable of doing that, IoT space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and IoT space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in IoT space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

젠더리스패션 선호에 영향을 미치는 요인에 관한 연구 - 자아존중감, 외모에 대한 사회문화적 태도, 성역할정체감을 중심으로 - (Investigating factors influencing genderless fashion preferences - A focus on self-esteem, sociocultural attitude toward appearance, and gender role identity -)

  • 이현지
    • 복식문화연구
    • /
    • 제31권6호
    • /
    • pp.705-719
    • /
    • 2023
  • The study aimed to investigate the factors influencing genderless fashion preferences. The questionnaires were collected from men and women participants aged 20 to 49 living in Seoul City and Gyeonggi Province. Data analysis involved factor analysis, t-test, ANOVA, and regression analysis. The findings revealed that genderless fashion preference comprised four factors, namely individuality pursuit, deviation from norms, fashion pursuit, and social recognition pursuit. Self-esteem encompassed two factors positive self-esteem, and negative self-esteem. while sociocultural attitude toward appearance consisted internalization, and awareness. Second, positive self-esteem significantly influenced individuality pursuit and deviation from norms in genderless preference factors. Third, sociocultural attitude toward appearance had a significant effect on genderless fashion preference, with awareness particularly exerting a significant effect on individuality pursuit, fashion pursuit, and social recognition pursuit. Fourth, genderless fashion preferences exhibited differences based on gender role identity in factors such as individual pursuit, norm avoidance, and trend pursuit. Lastly, demographic characteristics such as age, education, occupation, and monthly income revealed significant differences in genderless fashion preferences. From the results of the study, it was found that consumers perceived individuality pursuit, fashion pursuit, and social recognition pursuit as important influencing factors of genderless fashion preferences. In addition, it is necessary to create an independent brand identity by developing various items to express consumers' individuality, differentiated brand concepts from other brands, and store displays.

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.

AAM 기반 얼굴 표정 인식을 위한 입술 특징점 검출 성능 향상 연구 (A Study on Enhancing the Performance of Detecting Lip Feature Points for Facial Expression Recognition Based on AAM)

  • 한은정;강병준;박강령
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.299-308
    • /
    • 2009
  • AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.

Improved Lexicon-driven based Chord Symbol Recognition in Musical Images

  • Dinh, Cong Minh;Do, Luu Ngoc;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제12권4호
    • /
    • pp.53-61
    • /
    • 2016
  • Although extensively developed, optical music recognition systems have mostly focused on musical symbols (notes, rests, etc.), while disregarding the chord symbols. The process becomes difficult when the images are distorted or slurred, although this can be resolved using optical character recognition systems. Moreover, the appearance of outliers (lyrics, dynamics, etc.) increases the complexity of the chord recognition. Therefore, we propose a new approach addressing these issues. After binarization, un-distortion, and stave and lyric removal of a musical image, a rule-based method is applied to detect the potential regions of chord symbols. Next, a lexicon-driven approach is used to optimally and simultaneously separate and recognize characters. The score that is returned from the recognition process is used to detect the outliers. The effectiveness of our system is demonstrated through impressive accuracy of experimental results on two datasets having a variety of resolutions.

Improved DT Algorithm Based Human Action Features Detection

  • Hu, Zeyuan;Lee, Suk-Hwan;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.478-484
    • /
    • 2018
  • The choice of the motion features influences the result of the human action recognition method directly. Many factors often influence the single feature differently, such as appearance of the human body, environment and video camera. So the accuracy of action recognition is restricted. On the bases of studying the representation and recognition of human actions, and giving fully consideration to the advantages and disadvantages of different features, the Dense Trajectories(DT) algorithm is a very classic algorithm in the field of behavior recognition feature extraction, but there are some defects in the use of optical flow images. In this paper, we will use the improved Dense Trajectories(iDT) algorithm to optimize and extract the optical flow features in the movement of human action, then we will combined with Support Vector Machine methods to identify human behavior, and use the image in the KTH database for training and testing.