• Title/Summary/Keyword: Apoptotic caspases

Search Result 151, Processing Time 0.037 seconds

Comparative Molecular Similarity Indices Analysis of Caspase-3 Inhibitors

  • Babu, Sathya;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.227-233
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular similarity indices analysis (CoMSIA) was performed on a series of 3,4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMSIA model ($q^2$ = 0.586, $r^2$ = 0.955). The predictive ability of test set ($r^2_{pred}$) was 0.723. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

Up-regulation of Cyelin A-Cdk2 activity is associated with depolarization of mitochondrial membrane potential during apoptosis of human hepatoma SK-HEP1 cells induced by treatment with panaxadiol

  • Park, Byoung-Duck;Jin, Ying-Hua;Yim, Hyung-Shin;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.167.1-167.1
    • /
    • 2003
  • Here we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces acute apoptotic cell death in human hepatoma SK-HEP-1 cells as evidenced by analysis of DNA fragmentation, caspase activation, and changes in cell morphology. The kinetic study showed that panaxadiol-induced apoptosis is associated with depolarization of mitochondrial membrane potential and cytochrome c release. Sequential activations of caspases-depolarization of mitochondrial membrane potential and cytochrome c release. Sequential activations of caspases-9, and -3, or -7, but not of caspase 8 coincide well in a time dependent manner with mitochondrial membrane depolarization and cytochrome c release from mitochondria during apoptosis of SK-HEP-1 cells induced by treatment with panaxadiol. (omitted)

  • PDF

Study of Signaling Pathway on Apoptotic Cell Death Induced by Extract of Ailanthus altissima in Human Jurkat Lymphocytes (저근백피(樗根白皮) 추출물에 의한 급성 림프성 백혈병 Jurkat Lymphocytes의 세포고사 유도 및 신호기전 연구)

  • Lee, Ki Ouk;Kim, Ae Wha;Lim, Kyu Sang;Yun, Young Gab
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.349-362
    • /
    • 2017
  • Objectives : We investigated whether the components of Ailanthus altissima induced apoptotic cell death in Jurkat acute lymphoblastic leukemia (ALL) cells. Methods : Regulation of cell proliferation is a complex process involving the regulated expression and/or modification of discrete gene products, which control transition between different stages of the cell cycle. Results : Upon treatments with Ailanthus altissima, the concentration-dependent inhibitions of cell viability were observed as compared to untreated control group. The capability of Ailanthus altissima to induce apoptosis was associated with proteolytic cleavage of specific target proteins such as poly(ADP-ribose)polymerase (PARP) and beta-catenin proteins suggesting the possible involvement of caspases. Ailanthus altissima also caused apoptosis as measured by cell morphology and DNA fragmentation. Conclusions : These results indicate that the increase of apoptotic cell death by Ailanthus altissima may be due to the inhibition of cell cycle in human Jurkat lymphocytes. Conclusively, these current and further findings will provide novel approaches to understanding and treating major diseases.

The Effect of overcoming the TRAIL resistance through bufalin in EJ human bladder cancer cell (EJ 인간 방광암 세포에서 bufalin 의 TRAIL 저항성 극복 효과)

  • Hong, Su Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • Objectives : Bufalin is one of the bioactive component of 'Sum Su (蟾酥)', which is obtained from the skin and parotid venom gland of toad. Bufalin has been known to possess the inhibitory effects on cell proliferation and inducing apoptosis in various cancer cells. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has concerned, because it can selectively induce apoptotic cell death in many types of malignant cells, while it is relatively non-toxic to normal cells. Here, we investigated whether bufalin can trigger TRAIL-induced apoptotic cell death in EJ human bladder cancer cells. Methods : Effects on the cell viability and apoptotic activity were quantified using MTT assay and flow cytometry analysis, respectively. To investigate the morphological change of nucleus, DAPI staining was performed. Protein expressions were measured by immunoblotting. Results : A combined treatment with bufalin (10 nM) and TRAIL (50 ng/ml) significantly promoted TRAIL-mediated growth inhibition and apoptosis in EJ cells. The apoptotic effects were associated with the up-regulation of death receptor proteins, and the down-regulation of cFLIP and XIAP. Moreover, our data showed that bufalin and TRAIL combination activated caspases and subsequently increased degradation of poly(ADP-ribose) polymerase. Conclusions : Taken altogether, the nontoxic doses of bufalin sensitized TRAIL-mediated apoptosis in EJ cells. Therefore, bufalin might be an effective therapeutic strategy for the safe treatment of TRAIL-resistant bladder cancers.

Nuclear Factor-κB Activation: A Question of Life or Death

  • Shishodia, Shishir;Aggarwal, Bharat B.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.28-40
    • /
    • 2002
  • Apoptosis is a mode of cell death that plays an important role in both pathological and physiological processes. Research during the last decade has delineated the entire machinery needed for cell death, and its constituents were found to pre-exist in cells. The apoptotic cascade is triggered when cells are exposed to an apoptotic stimulus. It has been known for several years that inhibitors of protein synthesis can potentiate apoptosis that is induced by cytokines and other inducers. Until 1996, it was not understood why protein synthesis inhibitors potentiate apoptosis. Then three reports appeared that suggested the role of the transcription factor NF-${\kappa}B$ activation in protecting the cells from TNF-induced apoptosis. Since then several proteins have been identified that are regulated by NF-${\kappa}B$ and are involved in cell survival, proliferation, and protection from apoptosis. It now seems that when a cell is attacked by an apoptotic stimulus, the cell responds first by activating anti-apoptotic mechanisms, which mayor may not be followed by apoptosis. Whether or not a cell undergoes proliferation, the survival, or apoptosis, appears to involve a balance between the two mechanisms. Inhibitors of protein synthesis seem to suppress the appearance of protein that are involved in anti-apoptosis. The present review discusses how NF-${\kappa}B$ controls apoptosis.

Effect of Proapoptotic Bcl-2 on Naringenin-induced Apoptosis in Human Leukemia U937 Cells (Naringenin에 의한 인체혈구암세포의 apoptosis 유발에 미치는 pro-apoptotic Bcl-2의 영향)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Tae Hyun;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1118-1125
    • /
    • 2013
  • Naringenin, a naturally occurring citrus flavonone, is a potentially valuable candidate for cancer chemotherapy. However, the cellular and molecular mechanisms responsible for its anticancer activity are largely unknown. In the present study, we attempted to elucidate the mechanisms responsible for naringenin-induced apoptosis in human leukemic U937 cells. We found that naringenin markedly inhibited the growth of U937 cells by decreasing cell proliferation and inducing apoptosis, which was associated with the activation of caspases. A pan-caspase inhibitor, z-VAD-fmk, significantly inhibited naringenin-induced U937 cell apoptosis, indicating that caspases are key regulators of apoptosis in response to naringenin in U937 cells. Although the levels of antiapoptotic Bcl-2 and proapoptotic Bax proteins remained unchanged in naringenin-treated U937 cells, Bcl-2 overexpression attenuated naringenin-induced apoptosis. Furthermore, combined treatment with naringenin and HA14-1, a small-molecule Bcl-2 inhibitor, effectively increased the apoptosis through enhancement of XIAP down-regulation, Bid cleavage, and caspase activation, suggesting that the synergistic effect was at least partially mediated through the death receptor-mediated apoptosis pathway.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Intracellular pH is a Critical Element in Apoptosis Triggered by GM-CSF Deprivation in TF1 Cells

  • Yoon, Suk Ran;Choi, In Pyo
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.268-275
    • /
    • 2003
  • Background: Hemopoietic cells require the constant presence of growth factors for survival in vitro and in vivo. Caspases have been known as central executors of apoptotic cell death. We have, therefore, investigated the pathways that regulate caspase activity and apoptosis using the $CD34^+$ cell line, TF-1 which requires GM-CSF for survival. Methods: Apoptosis was measured by annexin V staining and mitochondrial membrane potential was measured by DiOC6 labelling. Intracellular pH was measured using pH sensitive fluorochrome, BCECF or SNARF-1, followed by flow cytometry analysis. Caspase activation was analyzed by PARP cleavage using anti-PARP antibody. Results: Removal of GM-CSF induceed PARP cleavage, a hallmark of caspase activity, concomitant with pHi acidification and a drop in mitochondrial potential. Treatment with ZVAD, a competitive inhibitor of caspases, partially rescued cell death without affecting pHi acidification and the reduction of mitochondrial potential, suggesting that both these events act upstream of caspases. Overexpression of Bcl-2 prevented cell death induced by GM-CSF deprivation as well as pHi acidification and the reduction in mitochondrial membrane potential. In parental cells maintained with GM-CSF, EIPA, a competitive inhibitor of $Na^+/H^+$ antiporter induced apoptosis, accompanied by a drastic reduction in mitochondrial potential. In contrast, EIPA induced apoptosis in Bcl-2 transfectants without causing mitochondrial membrane depolarization. Conclusion: Taken together, our results suggest that the regulation of $H^+$fluxes, either through a mitochondriondependent or independent pathway, is central to caspase activation and apoptosis.

Effect of Botulinum Toxin A on Proliferation and Apoptosis in the T47D Breast Cancer Cell Line

  • Bandala, Cindy;Perez-Santos, Jose Luis Martin;Lara-Padilla, Eleazar;Delgado Lopez, Ma. Guadalupe;Anaya-Ruiz, Maricruz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.891-894
    • /
    • 2013
  • The present study was performed to assess the activity of the botulinum toxin A on breast cancer cells. The T47D cell line was exposed to diverse concentrations of the botulinum toxin A and cell viability and apoptosis were estimated using MTT and propidium iodine/annexin V methods, respectively. Botulinum toxin A exerted greater cytotoxic activity in T47D cells in comparison with MCF10A normal cells; this appeared to be via apoptotic processes caspase-3 and -7. In conclusion, botulinum toxin A induces caspase-3 and -7 dependent apoptotic processes in the T47D breast cancer cell line.

Anticancer Effects and Mechanisms of Co-Treatment of Cisplatin with Taurine in MCF-7 Cells (MCF-7에서 Cisplatin과 타우린의 병용처리로 인한 항암효과 및 관련 기전)

  • Kim, Taehee;Kim, An Keun
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • The objective of this study is to evaluate the synergic effects of combined treatment with taurine and cisplatin in human breast cancer, MCF-7 cells. For this study, MCF-7 cells were treated with taurine (5, 10, and 20 mM) and cisplatin (0.5 ${\mu}M$) for 48 and 72 hrs. Co-treatment of cisplatin with taurine decreased cell proliferation more compared with cisplatin alone. Reduced cell proliferation was caused by apoptosis. Therefore we investigated the apoptotic cells. After treatment of cisplatin and taurine, apoptotic cells were slightly increased. Apoptosis-related proteins, cleaved caspases and cytochrome c were increased. The present study suggests that combination treatment of cisplatin with taurine enhance anticancer activity of cisplatin in MCF-7 cells.