
268
Immune Network

Introduction
  Apoptosis is a programmedcell death that serves as 
a major mechanism for the precise regulation of 
immune cell numbers (1) and a defence mechanism 
to remove unwanted and potentially dangerous cells 
such as self-reactive lymphocytes (2), virus-infected 
cells (3) and tumor cells (4). Since apoptosis plays 
critical role in regulation of immune system including 
tissue homeostasis and general cell turn-over, aber-
rant regulations of apoptosis lead to many immuno-
logical disorders such as autoimmune diseases (5), 
cancer and neurodegeneration (6). 
  Apoptosis was originally defined by morphological 
characteristics of dead or dying cells that exhibit 

cytoplamic blebbing, DNA fragmentation, chromatin 
condensation, and cell shrinkage (7). A number of 
biochemical changes have also been identified during 
induction of apoptosis including intracellular acidifi-
cation and changes in mitochondria (8,9). A fall of 
the mitochondrial potential has been known to occur 
before the fragmentation of the DNA in oligonucl-
eosomal fragment (10,11). Intracellular acidification 
has also been shown to be an early event that regu-
lates caspase activation resulting in apoptosis (12). 
However, relationship between these events and the 
role of these events during apoptosis in relation to 
other apoptotic regulators have not been clarified. 
  Several intracellular regulators involved in apop-
tosis have been identified in Caenorhabditis elegans (13). 
Among them, caspases and Bcl-2 family are mostly 
well characterized. Cysteine protease of the IL-1β
-converting enzyme (ICE) family (caspases) has been 
reported as a homology to the ced-3 gene product of 
the nematode, C. elegans, that is required for cell death 
during development (14). Bcl-2 has been known as 
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mammalian homologue of ced-9 in C. elegans, a nega-
tive regulator of apoptosis (15). Induction of apop-
tosis has been observed when caspases were overex-
pressed in their active form (16) and inhibition of 
apoptosis has been observed when caspases were 
specifically inhibited (17), indicating that caspase 
activation is essential process during apoptosis. In 
contrast, Bcl-2 has been shown to inhibit apoptosis 
induced by a wide variety of stimuli (18,19).
  Apoptosis has been reported to occur during 
hematopoietic as well as neural cell development (4, 
20). The tight control of proliferation, survival, and 
apoptosis of hematopoietic cells in bone marrow has 
a major role in allowing normal hematopoiesis. A 
variety of cytokines, including GM-CSF (granulocy-
tecolony stimulating factor) and IL-3 (interleukin-3), 
regulate viability, proliferation, differentiation, and 
function of hemopoietic cells (21). Hematopoietic 
cells undergo apoptotic cell death in the absence of 
growth factors, whereas an escape from this regula-
tion may result in leukemogenesis. In hematopoietic 
cells, it has been shown that IL-3, GM-CSF and 
erythropoietin promote cell survival through retarda-
tion of DNA break down. GM-CSF has been shown 
to activate PKC in monocytic cell line, U937 which 
leads to cell survival (22). Furthermore, exposure of 
monocytes to GM-CSF results in prolonged activa-
tion of the Na+/H+ antiporter, which correlates with 
cell proliferation (23). As hematopoietic cells express 
both high and low affinity receptors of GM-CSF, 
GM-CSF require to maintain survival of hematopo-
ietic cells in vitro (24). 
  The human myelo-erythroid CD34+ leukemia cell 
line, TF-1 has been reported to require GM-CSF or 
IL-3 for cell survival and undergo apoptosis upon 
growth factor deprivation (25). In the present study, 
we examined the role of regulations in intracellular 
acidification and mitochondria during apoptosis 
induced by GM-CSF deprivation in using hematopo-
ietic cells.

Materials and Methods 
Cell lines and growth factors. The human CD34+ hema-
topoietic cell line, TF1 cell that requires GM-CSF for 
cell survival was a kind gift from Dr. Thoshio 
Kitamura (DNAX, Seattle, WA, USA). The cells were 
cultured in IMDM (Gibco BRL, Gaithersburg, MD, 
USA) supplemented with 10% fetal calf serum (Gibco 
BRL) and 5 ng/ml GM-CSF. The cells were passaged 
every second day at 1.5×105 cells/ml. Purified 
recombinant GM-CSF was kindly provided by Dr. 
Steve Clark (Genetics Institute, Cambridge, MA, 
USA). Bcl-2 transfectant of TF1 was provided by Dr. 
Trang Hoang (IRCM, Montreal, QC, Canada).
Chemicals and antibodies. Mouse monoclonal anti-PARP 

antibody, and rabbit polyclonal anti-caspase-3 anti-
body were kindly provided by Dr. Serkaly in University 
of Montreal, Canada. ZVAD (carbobenzoxy-Val-Ala- 
Asp-fluoromethyl ketone) was purchased from En-
zyme Systems Products (Livermore, CA, USA). DioC6(3) 
(rhodamine 123, 3,3'-dihexyl-oxacarbocyanine iodide) 
was purchased from Molecular Probe (Eugene, OR, 
USA). 5-(N-ethyl-N-isopropyl) amiloride (EIPA) was 
provided by Dr. Trang Hoang.
Apoptosis assay. Apoptosis levels were measured by 
flow cytometric analysis using annexinV staining (26). 
Cells were cultured in the presence or absence of 
GM-CSF. 5×105 cells were washed in PBS and 
resuspended in 400μl of binding buffer (10 mM 
HEPES, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2, 
1.8 mM CaCl2). FITC conjugated annexin V was 
added and incubated for 10 min at 4oC. Just before 
analysis, propidium iodide (PI) was added and the 
cells were analyzed by FACS (Becton Dickinson, 
Franklin Lakes, NJ, USA).
Measurement of mitochondrial membrane potential. Cells 
were cultured in the presence or absence of GM-CSF 
for 48 hrs. Cells were transferred to v bottom plate 
and centrifuged. 40 nM DiOC6(3) was added to the 
cell pellet and resuspended. The plate was incubated 
for 15 min at 37oC in dark condition. The cells were 
washed with PBS by incubating at 37oC for 30 min. 
Cells were collected by centrifugation and resuspend-
ed in PBS followed by analysis using FACS (Beckton 
Dickinson).
Intracellular pH monitoring. pHi measurement was deter-
mined using pH sensitive fluorochrome, bis (carbo-
xyethyl) carboxyfluorescein, BCECF (Molecular Probes) 
or 1-carbocy-seminaphthorhodafluor-1 (acethyl-methyl 
ester) (27), SNARF-1 (Molecular Probes) (12). Cells 
were loaded for 30 min at 37oC with 10μM BCECF 
in sodium HEPES buffer. After washing, the cells 
were introduced in thermostated cuvette and the pH 
sensitive fluorescence was recorded continuously at 
37oC. Variations in pH were monitored by on a 
SPEX model CM1T111 dual excitation spectropho-
tometer. The ratio of pH sensitive fluorescence (exci-
tation wave length 500 nm) and pH insensitive fluo-
rescence (excitation wave length 450 nm) allows the 
calculation of pH, that is independent of cell number 
and dye concentration. For SNARF staining, the ratio 
was analyzed at 575 nm and 620 nm by FACS.
Western blotting. TF1 cells were cultured in the 
presence or absence of GM-CSF. Cells were harvest-
ed and washed in PBS and lysed with sample buffer 
(62.5 mM Tris-HCl, pH 6.8, 6 M Urea, 10% glycerol, 
2% SDS, 5% 2 ME, 0.00125% bromophenol blue) 
and boiled for 3 min. Lysates were subjected to 12% 
SDS-electrophoresis. Gels were transferred to nitro-
cellulose membrane (Amersham, Piscataway, NJ, 
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USA). Membranes were blocked with PBS containing 
5% skim mink and 0.05% Tween 20 and washed. 
Then, the membrane was incubated with anti caspase 
antibody (1：1,000 in 5% skim milk) and PARP 
antibody (1：1,500 in 5% skim milk) at 4oC, over-
night with shaking. The membrane was washed in 
PBS containing 0.5% Tween 20 and incubated with 
secondary antibody, anti rabbit HRP and anti mouse 
HRP for PARP. Detection was achieved by enhanced 
chemiluminescence (ECL, Amersham) and autoradiog-
raphy.

Results
Caspase-3 activation by GM-CSF withdrawal. TF1 is a 
CD34+ hemopoietic cell line that requires the growth 
factor GM-CSF for cell survival. Apoptosis was 
induced by GM-CSF withdrawal in TF1 cells. The 
levels of apoptosis were measured using annexin V 
which binds to phosphatidylserine on apoptotic cells. 
As annexin V negative live cells undergo apoptotic 
cell death, apoptotic cells bind to annexin V and dead 
cells bind to propidium iodide (26). TF1 cells sur-
vived in the presence of GM-CSF, whereas annexinV 
positive apoptotic cells were induced in the absence 
of GM-CSF (Fig. 1). In contrast, apoptosis was 
inhibited in Bcl-2 transfectants of TF1 cultured even 
in the absence of GM-CSF indicating overexpression 
of Bcl-2 rescued apoptosis by GM-CSF withdrawal 
(Fig. 1). Since caspase-3 has been known as a central 
executor of apoptotic process in most of cells (28), 
we investigated caspase activation during apoptosis by 
Western blot analysis using polyclonal antibody 
against caspase 3 and PARP in TF1 cells. As shown 
in Fig. 2, p15 and p17, active forms of caspase 3 
(cpp32) were detected in the cells cultured without 
GM-CSF. Furthermore, the activation of caspase was 
conformed by a cleavage of PARP, substrate of 
caspase-3. 116 kD of PARP was cleaved to 85 kD 

of apoptotic fragment in the cells cultured without 
GM-CSF indicating activation of caspase-3. These 
suggest that activation of caspase-3 involves the 
apoptosis of TF1 cells induced by growth factor 
deprivation. 

Figure 1. Annexin V and PI staining of apoptotic cells by GM-CSF deprivation in TF1cells. TF1
cells were cultured for 48 hrs in the absence or presence of GM-CSF. Bcl-2 transfectants of TF1
were also cultured for 48 hrs in the absence of GM-CSF. Cells were collected and stained with annexin
V-FITC and propidium iodide followed by FACS analysis. Apoptotic cells were represented as 
annexin-V positiveand PI negative cells.
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Figure 2. Immunoblot analysis of caspase-3 and PARP in TF1
cells. 1×106 of TF1 cells were cultured in the absence or 
presence of GM-CSF for 48 hr. Lysates of the cells were 
subjected to 12% SDS/PAGE and transferred to nitrocellulose
membrane. Filters were incubated with polyclonal antibody 
against caspase-3 or PARP followed by incubation with goat anti
rabbit IgG-HRP and anti mouse IgG-HRP, respectively. 
Immunoactivity was detected by ECL reaction. Quantification of
protein was done by Ponceau-S staining. p85, the apoptotic 
fragment of PARP; p15 and p17, active form of caspase-3 
(cpp32) were detected in the cells cultured without GM-CSF. 
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Growth factor withdrawal triggers apoptosis concomitant with 
a reduction in mitochondrial potential and intracellular acid-
ification. The dissipation of mitochondrial transmem-
brane potential (ΔΨ) (10,30) and intracellular acid-
ification have been suggested as early events of the 
cell death process (12). We observed changes in 
mitochondrial potential using DiOC6(3) and intracel-
lular pH using pH sensitive fluorochrome, BCECF 
during the apoptosis induced by deprivation of GM- 
CSF. As shown in Fig. 3A, apoptosis represented as 
annexin V positive cells was induced concomitant 
with reduction of mitochondrial potential and pHi 
acidification in TF1 cells cultured in the absence of 
GM-CSF. In order to examine the roles of caspase 
on mitochondrial potential intracellular acidification 
during apoptosis, cells were treated with ZVAD, ICE 
(interleukin-1β converting enzyme family) inhibitor, 

in the absence of GM-CSF. ZVAD partially recov-
ered apoptotic cells in the absence of GM-CSF, 
however had no effect on reduction of mitochondrial 
potential and intracellularacidification induced by 
GM-CSF withdrawal (Fig. 3B, 3C). On the other 
hand, overexpression of Bcl-2 rescued cell survival 
and restored the mitochondrial membrane potential 
and intracellular acidification. These data imply that 
caspase-3 acts downstream of mitochondrial depolari-
zation and intracellular acidification act upstream of 
caspases and down stream of Bcl-2.
Na+/H+ antiporter inhibitor, EIPA induce apoptosis. In 
order to further dissect the role of mitochondrion 
and Bcl-2 in regulating pHi and caspase activation, 
we prevent H+ influx through Na+/H+ antiporter 
using EIPA, a competitive inhibitor of Na+/H+ 
antiporter. EIPA induced apoptosis in a dose depen-

Figure 3. Effect of ZVAD and Bcl-2 on biochemical events of apoptosis. To examine the effect of Bcl-2, Bcl-2 transfectants of
TF1 cells were employed. Cells were treated with caspase-3 inhibitor, ZVAD in the absence of GM-CSF for 30 hr. (A) Apoptotic
cells were measured by annexin V and propidium iodide staining followed by FACS analysis. Apoptotic cells were represented as 
annexinV positive cells. (B) For measurement of mitochondrial potential, cells were stained with 40 nM of DiOC6(3) and analyzed
by flow cytometry. DiOC6(3), cationic dye which can be retained by mitochondrial inner membrane. The percentages reflect the cells
in which mitochondrial potentials are reduced. (C) Intracellular pH was determined using pH sensitive fluorochrome, bis (carboxyethyl)
carboxyfluorescein, BCECF and analyzed by dual excitation spectro-photometer. The 575 nm/620 nm ratio represents intracellular pH
(a higher ratio reflects decreased pH). 
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dent manner in parental cells maintained with GM- 
CSF (Fig. 4A). In addition, treatment with EIPA also 
induced apoptosis in Bcl-2 transfectants in a dose 
dependant manner (Fig. 4B), indicating EIPA pre-
vents the effect of GM-CSF and Bcl-2 in suppressing 
apoptosis. Effect of EIPA on mitochondrial potential 
was also investigated. In parental cells maintained 
with GM-CSF, EIPA induced apoptosis accompanied 
by drastic reduction in mitochondrial potential (Fig. 
5A). In contrast, EIPA did not affect mitochondrial 
potential in Bcl-2 transfectant, indicating that inhi-
bition of the Na+/H+ antiporter in Bcl-2 trans-
fectant induces apoptosis in the absence of mito-
chondrial membrane depolarization (Fig. 5B). These 
data suggest that apoptosis by inhibition of Na+/H+ 
antiporter might occur in a mitochondria dependant 
or independent pathway. 
pHi acidification in apoptosis is rescued by ectopic expression 
of Bcl-2. The changes in intracellular pH were mea-
sured in parental cells and Bcl-2 transfectant using 

SNARF-1. Cell viability was also examined using 
annexin V staining with the same cells. As shown in 
Fig. 6, EIPA decreased intracellular pH in the pres-
ence of GM-CSF to the similar level of pHi observed 
in parental cells cultured without GM-CSF. In 
contrast, pHi acidification by GM-CSF was rescued 
by overexpression of Bcl-2. However, EIPA induced 
intracellular acidification in Bcl-2 transfectant. In 
addition, cell viability was correlated with intracellular 
acidification in both parental cells and Bcl-2 trans-
fectant, suggesting that the regulation of pHi is crucial 
for the suppression of apoptosis by GM-CSF or 
Bcl-2.

Discussion 
  In an attempt to assess the role of cytoplasmic acid-
ification and regulation of mitochondrial membrane 
potential during apoptosis. Apoptosis was triggered 
by growth factor deprivation using hemopoietic cell 
line, TF1 that requires GM-CSF for cell survival. We

Figure 4. Effect of antiporter inhibitor, EIPA on apoptosis in TF1 and its Bcl-2 transfectants. Parental cells (TF1) (A) and Bcl-2
transfectant (B) were treated with different dose of EIPA in the absence or presence of GM-CSF for 40 hrs. The cells were collected
and stained with annexin V. FACS analysis was performed and apoptotic cells were represented as annexin-V positive cells. 
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Figure 6. Effect of EIPA and Bcl-2 on intracellular pH and cell viability. Parental cells (TF1) (A) and 
Bcl-2 transfectants (B) were treated with antiporter inhibitor, EIPA 20μM for 40 hrs. The cells were 
performed annexin V staining and measured pHi as described in Materials and Methods. Cell viability was 
represented as % of annexinV negative viable cells. Intracellular pH was measured using SNARF-1. pH
was estimated from standard curves generated in parallel using cells suspended in buffers of known pH.
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Figure 5. Effect of EIPA on mitochondrial potential maintained by GM-CSF and Bcl-2 over expression. Parental cells (TF1) (A)
and Bcl-2 transfectants (B) were treated with different dose of EIPA in the absence or presence of GM-CSF for 40 hrs. Mitochondrial
potential was measured using DiOC6(3) as described in Materials and Methods. FACS analysis was performed and reduction of 
mitochondrial potential was represented as the number of DiOC6(3) negative cells.
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investigated activation of caspase-3 that has emerged as 
a central executor of apoptosis. Caspases are syn-
thesized as inactive precursors that require proteolytic 
conversion to become active protease. For instance, 
during apoptosis triggered by TCR cross-linking in T 
lymphocytes, the 32 kD caspase proenzyme is first 
cleaved to release fragment of 12 and 20 kD. 
Removal of the 3 kD propeptide form p20 generates 
the p17 form associated with caspase-3 activity and 
apoptosis (29). Activation of caspase-3 accompanied 
by a cleavage of the substrate for caspase-3, Poly 
(ADP-ribose) polymerase (PARP), which cleaved to 
80 kD of apoptotic fragment by caspase-3 during 
apoptosis (30). Our results showing p15 and p17, 
activated forms of caspase 3 (cpp32) and 85 kDa of 
cleavage fragment of PARP indicate activation of 
caspase-3 during the apoptosis. 
  During the apoptosis induced by GM-CSF with-
drawal in TF1 cells, intracellular acidification and 
reduction of mitochondrial potential were observed 
concomitantly with caspase activation. Competitive 
inhibitor of caspase-3, ZVAD partially recovered 
apoptosis without affecting mitochondrial potential 
and intracellular pH. If caspase activation is a prereq-
uisite for intracellular acidification or reduction of 
mitochondrial potential to occur, then inhibitor of 
caspase should inhibit acidification or reduction of 
mitochondrial potential. In our result, ZVAD has no 

effect on intracellular acidification and reduction of 
mitochondrial potential, suggesting that caspase acti-
vation is not prerequisite, that is, caspase act downs-
tream of both events during apoptosis triggered by 
growth factor deprivation. On the other hand, ectop-
ic expression Bcl-2 completely rescued cell death in 
the absence of GM-CSF with preventing from re-
duction of mitochondrial potential and intracellular 
acidification. These are supported by report that Bcl-2 
family members are upstream of caspase activation 
(through their association with CED-4), regulate pHi 
and prevent mitochondrial depolarization (12). 
  The mitochondria have been known to play an 
essential role in the apoptotic cell death by releasing 
various apoptotic proteins including cytochrome c 
into the cytoplasm. In the process of apoptosis, re-
lease of cytochrome c into the cytoplasm activates 
death promoting caspase, which in turn cleave a set 
of cellular proteins and promote the death program (9, 
31). It has been shown that Bcl-2 family of proteins 
regulate mitochondrial changes during apoptosis (32) 
and they can directly control mitochondrial mem-
brane permeability, mainly through regulation of 
formation of apoptotic proteinconducting pores in 
the outer mitochondrial membrane (31). It has also 
been suggested that intracellular acidification results 
from a change in the set point of Na+/H+ antiporter 
which might result from its dephosphorylation (33). 
In order to further dissect the role of the mito-
chondrion and of Bcl-2 in regulating pHi and caspase 
activation, we prevented H+ fluxes using 5-(N-ethyl- 
N-isopropyl) amiloride (EIPA) that specifically block 
Na+/H+ antiporter. In parental cells maintained with 
GM-CSF, EIPA induced apoptosis, accompanied by 
a drastic reduction in mitochondrial potential, where-
as EIPA induces apoptosis in Bcl-2 transfectants 
without causing mitochondrial membrane depolari-
zation. These suggest that intracellular acidification by 
inhibition of Na+/H+ antiporter might occur mito-
chondria dependant or independent pathway. These 
results are in agreement with hypothesis that at least 
two principle pathways for apoptosis; one requiring 
the participation of mitochondria, which activate 
caspase by releasingcytochrome c and another in 
which mitochondria are bypassed and caspases are 
activated directly (34,35). 
  Taken together, our results, as summarized in Fig. 
7, show that mitochondrial membrane depolarization 
followed by intracellular acidification leads to apopto-
sis through caspase activation in TF1 cells when 
GM-CSF is deprived. In addition, inhibition of Na+

/H+ antiporter can induce apoptosis through in-
tracellular acidification followed by caspase activation 
without causing mitochondrial depolarization. These 
suggest that the regulation of H+ fluxes, either 

Figure 7. Schematic model of apoptosis triggered by GM-CSF
deprivation in hematopoietic cell line, TF1. TF1 cells undergo 
apoptosis through mitochondrial membrane depolarization which
can be blocked by Bcl-2, which is followed by intracellular acidifi-
cation and caspase activation in the absence of GM-CSF. On the
other hand, inhibition of Na+/H+ antiporter can also induce 
apoptosis through intracellular acidification followed by caspase 
activation.
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through a mitochondrion-dependent or independent 
pathway, is central to caspase activation and apo-
ptosis induced by growth factor deprivation.
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