• Title/Summary/Keyword: Apoptosis Gene

Search Result 927, Processing Time 0.032 seconds

Apo-1/Fas (CD95) Gene Polymorphism in Korean Hepatocellular Carcinoma Patients

  • Kim, Sung-Soo;Hong, Seung-Jae;Ahn, Yun-Gul;Kim, Bong-Seog;Yuh, Young-Jin;Han, Kye-Young;Lee, Hee-Jae;Chung, Joo-Ho;Yim, Sung-Vin;Cho, Jae-Young;Park, Yeon-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.29-31
    • /
    • 2003
  • It is well known that different expression of Apo-1/Fas (CD95) plays important roles in various tumors and hepatocellular carcinoma (HCC) pathogenesis. Apo-1/Fas mediated apoptosis is one of the important pathways of apoptosis and is known to mediate apoptotic cell death by fas ligand (FasL). To examine the possible relationship between Apo-1/Fas gene polymorphism and HCC susceptibility, MvaI restriction fragment length polymorphism (RFLP) of Apo-1/Fas gene was examined in 94 Korean HCC patients and 240 control subjects. No statistically significant difference in the genotypic distribution and allelic frequencies was found between the control and the HCC. It is, therefore, concluded that Apo-1/Fas gene polymorphism is not associated with HCC susceptibility. Further studies are needed in order to clarify the relationships between genotypes of Apo-1/Fas gene and HCC pathogenesis.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

Activation of Antioxidant-Response Element (ARE), Mitogen- Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death

  • Chen, Chi;Yu, Rong;Owuor, Edward D.;Kong, A.NTony
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2000
  • Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase IIgene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 $\mu\textrm{m}$with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 $\mu\textrm{m}$ to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP.

  • PDF

Functional Defect of the Fas Mutants Detected in Gastric Cancers (위암에서 발견된 돌연변이형 Fas 단백의 기능적 결함)

  • Park Won Sang;Cho Young Gu;Kim Chang Jae;Park Cho Hyun;Kim Young Sil;Kim Su Young;Nam Suk Woo;Lee Sug Hyung;Yoo Nam Jin;Lee Jung Young
    • Journal of Gastric Cancer
    • /
    • v.3 no.4
    • /
    • pp.186-190
    • /
    • 2003
  • Purpose: The balance between cell proliferation and apoptosis is crucial for homeostatic maintenance in a cell population. Decreased apoptosis or uncontrolled proliferation can lead to cancer. The Fas receptor signal through a cytoplasmic death domain is very important in the apoptotic pathway. To identify the effect of the death domain of the Fas gene in the development and/or progression of gastric cancer, we examined the apoptotic potential of five known Fas mutants detected in gastric cancers. Materials and Methods: A wild-type Fas gene was cloned with cDNA from normal liver tissue and full length Fas was sequenced. Mutants of the gene were generated with sitedirected mutagenesis by using the wild-type gene and specific primers. Wild- and mutant-type genes were transfected to HEK293 cells. Forty-eight hours after transfection the cells were stained with DAPI and cell death was counted under fluorescent microscopy. Results: In wild-type Fas-transfected cells, the percentage of apoptotic cells was $85.9\pm3.6\%$, and significant cell death and classic morphologic signs of apoptosis were observed. However, the percentages of apoptotic cells transfected with N239D, E240G, D244V, and R263H of tumor-derived mutant Fas were $29.5\pm2.08\%,\;28.5\pm3.34\%,\;25.225\pm2.06\%,\;and\;36.625\pm4.49\%$, respectively. Conclusion: These results suggest that inactivation of Fas caused by mutations in the death domain of the Fas gene may be one of the possible escape mechanisms against Fas-mediated apoptosis and that inactivating mutation of the Fas may contribute to the development or progression of gastric cancers.

  • PDF

Effects of programmed cell death induction method on somatic cell development

  • Kim, Sang-Hwan
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.137-144
    • /
    • 2021
  • In this study, to analyze whether artificial regulation of apoptosis in the development of somatic cells can affect the stable growth and development of cells, 20 alpha-hydroxysteroid dehydrogenase (20α-HSD) and rapamycin were treated to induce apoptosis and autophagy in the both skin and muscle cells. Respectively, and 3-methyladenine was supplemented to inhibit cell death. Our results show that stimulation with rapamycin activated autophagy in both types of cells, but increased apoptosis more than autophagy in the case of skin cells. These results indicate that there was a difference in the expression of survival factors and cell development depending on the type of cell. In particular, in the expression of autophagy-related gene (MAP1LC3A) was higher than that of Casp-3, an apoptosis factor. Furthermore, cell development was the highest in all cell groups cultured by artificially inducing autophagy, however the lowest in the apoptosis-inhibited group. Especially, the noteworthy result of this study was that when apoptosis was induced using 20α-HSD, it was possible to induce apoptosis in both skin and muscle cells. Therefore, the main point of this study is that apoptosis induced during cell culture plays a pivotal role in cell remodeling.

Effect of Cellular Zinc on the Regulation of C2-ceramide Induced Apoptosis in Mammary Epithelial and Macrophage Cell Lines

  • Han, S.E.;Lee, H.G.;Yun, C.H.;Hong, Z.S.;Kim, S.H.;Kang, S.K.;Kim, S.H.;Cho, J.S.;Ha, S.H.;Choi, YunJaie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1741-1745
    • /
    • 2005
  • Zinc is a trace element that is associated with a stimulation of immune function and regulation of ion balance for livestock production. In this study, the effect of zinc as inhibitor to apoptosis-induced cells was examined in vitro using mammary epithelial cell line, HC11 and macrophage cell line, NCTC3749. Cell viability, measured by MTT assay, indicated that 10 g/ml of zinc had a negative impact on cellular activity and 50 ng/ml was chosen for further testing. Apoptosis was induced in cells treated with C2-ceramide in serum-free media. DNA fragmentation and gene expression of acidic sphingomyelinase (a gene responsible for the progress of apoptosis) were distinctively low in zinc treated cells compared with those in non-treated controls. In conclusion, zinc is involved in the regulation of cell proliferation and apoptosis in mammary epithelial cells and macrophages.

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon;Kim, Min Hye;Kwon, Hyung Joo;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

Expression of the Antioxidant Enzyme and Apoptosis Genes in In vitro Maturation/In vitro Fertilization Porcine Embryos

  • Jang, H.Y.;Kong, H.S.;Lee, S.S.;Choi, K.D.;Jeon, G.J.;Yang, B.K.;Lee, C.K.;Lee, H.K
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This study was aimed at testing the gene expression of antioxidant enzymes and apoptosis genes for in vitro culture in porcine embryos produced by in vitro maturation/in vitro fertilization (IVM/IVF). Pocine preimplantation embryos obtainted from IVM/IVF can be successfully culture in vitro, but they are delayed or stop to develop at specific developmental stage. Many factors such as reactive oxygen species and apoptosis in an IVM/IVF system followed by in vitro culture influence the rate of production of viable blastocysts. Porcine embryos derived from IVM/IVF were cultured in the atmosphere of 5% $CO_2$ and 20% $O_2$ at $38.5^{\circ}C$ in NCSU23 medium. The patterns of gene expression for antioxidant enzymes and apoptosis genes during in vitro culture in pocine IVM/IVF embryos were examined by the modified semi-quantitative single cell reverse transcriptase-polymerase chain reaction (RT-PCR). Porcine embryos produced by in vitro procedures were expressed mRNAs for CuZn-SOD, GAPDH and GPX, whereas transcripts for Mn-SOD and catalase were not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell 16 cell and blastocyst, but p53 mRNA was not detected at any stages. The fas transcripts was only detected in blastocyst stage. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in vitro culture of porcine IVM/IVF embryos.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

Cathepsin B Inhibitor, E-64, Affects Preimplantation Development, Apoptosis and Oxidative Stress in Pig Embryos

  • Son, Hyeong-Hoon;Min, Sung-Hun;Yeon, Ji-Yeong;Kim, Jin-Woo;Park, Soo-Yong;Lee, Yong-Hee;Jeong, Pil-Soo;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.175-183
    • /
    • 2013
  • Cathepsin B is abundantly expressed peptidase of the papain family in the lysosomes, and closely related to the cell degradation system such as apoptosis, necrosis and autophagy. Abnormal degradation of organelles often occurs due to release of cathepsin B into the cytoplasm. Many studies have been reported that relationship between cathepsin B and intracellular mechanisms in various cell types, but porcine embryos has not yet been reported. Therefore, this study evaluated the effect of cathepsin B inhibitor (E-64) on preimplantation developmental competence and quality of porcine embryos focusing on apoptosis and oxidative stress. The expression of cathepsin B mRNA in porcine embryos was gradually decreased in inverse proportion to E-64 concentration by using real-time RT-PCR. When putative zygotes were cultured with E-64 for 24 h, the rates of early cleavage and blastocyst development were decreased by increasing E-64 concentration. However, the rate of blastocyst development in $5{\mu}M$ treated group was similar to the control. On the other hand, both the index of apoptotic and reactive oxygen species (ROS) of blastocysts were significantly decreased in the $5{\mu}M$ E-64 treated group compared with control. We also examined the mRNA expression levels of apoptosis related genes in the blastocysts derived from $5{\mu}M$ E-64 treated and non-treated groups. Expression of the pro-apoptotic Bax gene was shown to be decreased in the E-64 treated blastocyst group, whereas expression of the anti-apoptotic Bcl-xL gene was increased. Taken together, these results suggest that proper inhibition of cathepsin B at early development stage embryos improves the quality of blastocysts, which may be related to not only the apoptosis reduction but also the oxidative stress reduction in porcine embryos.