• Title/Summary/Keyword: Apoptosis Caspase-3

Search Result 1,493, Processing Time 0.025 seconds

Naringin Protects against Rotenone-induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Hak-Jae;Song, Jeong-Yoon;Park, Hae-Jeong;Park, Hyun-Kyung;Yun, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.281-285
    • /
    • 2009
  • Rotenone, a mitochondrial complex I inhibitor, can induce the pathological features of Parkinson's disease (PD). In the present study, naringin, a grapefruit flavonoid, inhibited rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We assessed cell death and apoptosis by measuring mitogen-activated protein kinase (MAPKs) and caspase (CASPs) activities and by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Naringin also blocked rotenone-induced phosphorylation of Jun NH2-terminal protein kinase (JNK) and P38, and prevented changes in B-cell CLL/lymphoma 2 (BCL2) and BCL2-associated X protein (BAX) expression levels. In addition, naringin reduced the enzyme activity of caspase 3 and cleavages of caspase 9, poly (ADP-ribose) polymerase (PARP), and caspase 3. These results suggest that naringin has a neuroprotective effect on rotenone-induced cell death in human neuroblastoma SH-SY5Y cells.

Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast Cancer Cell Line

  • Shahsavari, Zahra;Karami-Tehrani, Fatemeh;Salami, Siamak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7261-7266
    • /
    • 2015
  • Breast cancer, the most common cancer in the women, is the leading cause of death. Necrotic signaling pathways will enable targeted therapeutic agents to eliminate apoptosis-resistant cancer cells. In the present study, the effect of shikonin on the induction of cell necroptosis or apoptosis was evaluated using the T-47D breast cancer cell line. The cell death modes, caspase-3 and 8 activities and the levels of reactive oxygen species (ROS) were assessed. Cell death mainly occurred through necroptosis. In the presence of Nec-1, caspase-3 mediated apoptosis was apparent in the shikonin treated cells. Shikonin stimulates ROS generation in the mitochondria of T-47D cells, which causes necroptosis or apoptosis. Induction of necroptosis, as a backup-programmed cell death pathway via ROS stimulation, offers a new strategy for the treatment of breast cancer.

Atromentin-Induced Apoptosis in Human Leukemia U937 Cells

  • Kim, Jin-Hee;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.946-950
    • /
    • 2009
  • In the course of screening for apoptotic substances that induce apoptosis in human leukemia U937 cells, a fungal strain, F000487, which exhibits potent inducible activity, was selected. The active compound was purified from an ethyl acetate extract of the microorganism by Sep-pak $C_{18}$ column chromatography and HPLC, and was identified as atromentin by spectroscopic methods. This compound induced caspase-3 processing in human leukemia U937 cells. The caspase-3 and poly (ADP-ribose) polymerase (PARP) were induced by atromentin in a dose-dependent manner. Furthermore, DNA fragmentation was also induced by this compound in a dose-dependent manner. These results show that atromentin potently induces apoptosis in U937 cells and that atromentin-induced apoptosis is related to the selective activation of caspases.

Resveratrol Induces the Apoptosis of Osteosarcoma Saos-2 Cells (레스베라트롤에 의한 골육종 Saos-2 세포의 세포고사)

  • 이현장;양재현;최익준;최이천;김용권;임창인;윤재도;김호찬;원진숙
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.259-265
    • /
    • 2002
  • Resveratrol, a phytoalexin found in grapes, berries, and peanuts, is one of the most promising agents for cancer prevention. Recent studies show that the antitumor activity of resveratrol occurs through p53-mediated apoptosis. This study demonstrated the mechanism that resveratrol induced apoptosis in human osteosarcoma Saos-2 cells lacking p53. Treatment of osteosarcoma Saos-2 cells with resveratrol resulted in decrease of cell viability, which was revealed as apoptosis characterized by activation of caspase-3 protease as well as cleavage of poly(ADP-ribose) polymerase (PARP) with change of mitochondrial membrane potential transition. These results suggest that resveratrol may be potentially useful to treat osteosarcoma via activation of caspase protease and mitochondrial dysfunction.

Butein-Induced Apoptosis in Human T Lymphoma Jurkat Cells (Butein의 Jurkat T 림포마 세포에서 발현되는 세포괴사 효과)

  • Kim, Na-young
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.150-154
    • /
    • 2008
  • Butein is a one of polyphenolic compound widely available in numerous plants. It has broad biological activities including antioxidant and anti-inflammatory activities, which contributed to its protective effects against cancer. Evidences that butein influence proliferation of tumor cells make it important to determine how butein affects cell death of various cancers. In this study, we show that butein, a phenolic compound, induces apoptosis in human T lymphoma jurkat cells. We found that treatment of cells with butein increased apoptosis in a dose- and time- dependent manner as determined by staining cells with Annexin V and 7AAD. There was no significant apoptotic cell death when normal lymphocytes and monocytes from healthy donor were treated with butein. We also found caspase-3 activity was increased during butein-induced apoptosis. The buteininduced apoptotic cell death was blocked by the treatment of cells with caspase-3 inhibitor. These results indicate that butein has the potential to provide an effective strategy against cancer with the advantage of being widely avalible.

Ginsenoside Rb3 ameliorates podocyte injury under hyperlipidemic conditions via PPARδ- or SIRT6-mediated suppression of inflammation and oxidative stress

  • Heeseung Oh;Wonjun Cho;Seung Yeon Park;A.M. Abd El-Aty;Ji Hoon Jeong;Tae Woo Jung
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.400-407
    • /
    • 2023
  • Background: Rb3 is a ginsenoside with anti-inflammatory properties in many cell types and has been reported to attenuate inflammation-related metabolic diseases such as insulin resistance, nonalcoholic fatty liver disease, and cardiovascular disease. However, the effect of Rb3 on podocyte apoptosis under hyperlipidemic conditions, which contributes to the development of obesity-mediated renal disease, remains unclear. In the current study, we aimed to investigate the effect of Rb3 on podocyte apoptosis in the presence of palmitate and explore its underlying molecular mechanisms. Methods: Human podocytes (CIHP-1 cells) were exposed to Rb3 in the presence of palmitate as a model of hyperlipidemia. Cell viability was assessed by MTT assay. The effects of Rb3 on the expression of various proteins were analyzed by Western blotting. Apoptosis levels were determined by MTT assay, caspase 3 activity assay, and cleaved caspase 3 expression. Results: We found that Rb3 treatment alleviated the impairment of cell viability and increased caspase 3 activity as well as inflammatory markers in palmitate-treated podocytes. Treatment with Rb3 dosedependently increased PPARδ and SIRT6 expression. Knockdown of PPARδ or SIRT6 reduced the effects of Rb3 on apoptosis as well as inflammation and oxidative stress in cultured podocytes. Conclusions: The current results suggest that Rb3 alleviates inflammation and oxidative stress via PPARδ-or SIRT6-mediated signaling, thereby attenuating apoptosis in podocytes in the presence of palmitate. The present study provides Rb3 as an effective strategy for treating obesity-mediated renal injury.

Potentiation of Apoptin-Induced Apoptosis by Cecropin B-Like Antibacterial Peptide ABPs1 in Human HeLa Cervical Cancer Cell Lines is Associated with Membrane Pore Formation and Caspase-3 Activation

  • Birame, Basse Mame;Wang, Jigui;Yu, Fuxian;Sun, Jiazeng;Li, Zhili;Liu, Weiquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.756-764
    • /
    • 2014
  • Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in chicken or human tumor cells, localizing in their nuclei as opposed to the cytoplasm of non-transformed cells. The present study was undertaken to investigate whether ABPs1 could potentiate apoptin-induced apoptosis in HeLa cells. ABPs1 and the apoptin genes were successfully cloned into pIRES2-EGFP expression vector and expressed in HeLa cells. We report that ABPs1 augments apoptin cell growth inhibition in a concentration- and time-dependent manner. The DAPI staining and scanning electron microscopy observations revealed apoptotic bodies and plasma membrane pores, which were attributed to apoptin and ABPs1, respectively. Further, ABPs1 in combination with apoptin was found to increase the expression of Bax and to decrease the expression of survivin compared with either agent alone or the control. The apoptotic rate of HeLa cells treated with ABPs1 and apoptin in combination for 48 h was 53.95%. The two-gene combination increased the caspase-3 activity of HeLa cells. Taken together, our study suggests that ABPs1 combined with apoptin significantly inhibits HeLa cell proliferation, and induces cell apoptosis through membrane defects, up-regulation of Bax expression, down-regulation of survivin expression, and activation of the caspase-3 pathway. Thus, the combination of ABPs1 and apoptin could serve as a means to develop novel gene therapeutic agents against human cervical cancer.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

Pseudomonas aeruginosa Exotoxin A Induces Apoptosis in Chemoresistant YD-9 Human Oral Squamous Carcinoma Cell Line Via Accumulation of p53 and Activation of Caspases (항암제에 저항성을 가지는 YD-9 human oral squamous carcinoma cell line에서 Pseudomonas aeruginosa exotoxin A의 p53 단백질 누적과 caspase를 활성화 경로를 통해 유도된 세포자멸사)

  • Kim, Gyoo-Cheon;Gil, Young-Gi
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1047-1054
    • /
    • 2009
  • Oral squamous carcinoma (OSC) cells present resistance to chemotherapeutic agents-mediated apoptosis in the late stages of malignancy. Advances in the understanding of bacterial toxins have produced new strategies for the treatment of cancers. It was demonstrated here that Pseudomonas aeruginosa exotoxin A (PEA) significantly decreased the viability of chemoresistant YD-9 cells in the apoptosis mechanism. Apoptotic manifestations were evident through changes in nuclear morphology and generation of DNA fragmentation. PEA treatment induced caspase-3, -6 and -9 cleavage, and activation. These events preceded proteolysis of the caspase substrates poly (ADP-ribose) polymerase (PARP), DNA fragmentation factor 45 (DFF45), and lamin A in YD-9 cells. The reduction of mitochondrial membrane potential, release of cytochrome c and SmacjDlABLO from mitochondria to cytosol, andtranslocation of AlF into nucleus were shown. While p53, p21 and $14-3-3{\gamma}$ were upregulated, cyclin Band cdc2 were downregulated by PEA treatment. Taken together, PEA induces apoptosis in chemoresistant YD-9 cells via activation of caspases, mitochondrial events and regulation of cell cycle genes.

Extract of Alnus japonica Induces Apoptosis of Human Colon Adenocarcinoma Cells through the Mitochondria/Caspase Pathway (대장암세포주에서 적양 추출물의 미토콘드리아/Caspases 경로를 통한 Apoptosis 유도 작용)

  • Jeon, Byoung-Kook;Baik, Soon-Ki;Woo, Won-Hong;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.199-205
    • /
    • 2012
  • An extract of Alnus japonica (Betulaceae) cortex has been traditionally used for purifying blood, and curing feces containing blood, enteritis, diarrhea, alcoholism and cut wounds. In the present study, we demonstrated that the ethanol extract of Alnus japonica (EAJ) exhibited significantly cytotoxicity in human colon adenocarcinoma HT-29 cells. The results showed that the induction of apoptosis in HT-29 cells by EAJ was characterized by chromatin condensation and activation of caspase-3. EAJ-induced activation of caspase-9 and -3 caused the cleavage of poly ADP-ribose polymerase (PARP) and the release of cytochrome c. The expressions of Bcl-2 and Bid were reduced by EAJ in HT-29 cells, whereas pro-apoptotic protein Bak was increased in the cells. EAJ-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP kinases (JNK and p38 MAPK), ASK1, and p53. NAC administration, a scavenger of ROS, reversed EAJ-induced cell death. In conclusion, these results indicated that EAJ can cause apoptosis through a ROS-mitochondria-caspases-dependent pathway in human HT-29 cells.