• Title/Summary/Keyword: Apoptosi

Search Result 371, Processing Time 0.03 seconds

Induction of Apoptosis by Ursolic Acid in F9 Teratocarcinoma Cells (F9 기형암종세포에서 Ursolic acid의 apoptosis 유도기작)

  • 강창모;백진현;김규원
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • The apoptosis-inducing activity of ursolic acid (UA) was examined in mouse F9 teratocarcinoma cells on the bases of biochemical and morphological characteeristics. UA, pentacyclic trierpene acid, exhibits antitumor activities including inhibition of skin tumorigenesis, induction of tumor cell differentiation and antitumor promotion. Treatment with UA showed that the decrease of cell viability was dose-dependent. UA also induced genomic DNA fragmetation, a hallmark of apoptosis, indicating that the mechanism of UA-induced F9 cell death was through apoptosis. When the morphology of the F9 cells was examined by electron microscopy, the cells treated with UA showed the charcteristic morphological features of apoptosis such as chromatin condensation and nuclear fragmentation. DNA fragmentations by UA were inhibired by cycloheximide, which suggest that de novo protein synthesis was required for DNA fragmentation by UA. Inaddition, the expression of c-jun was increased, but those of c-myc and laminin B1 were decreased during apoptosis induced by UA in F9 cells. These results suggest that UA causes an apoptosis in F9 cells. Further, the increased expression of c-jun may be involved in the UA-induced apoptosis of f9 cells.

  • PDF

Effects of Schizandra chinensis fructus on the Immunoregulatory Action and Apoptosis of L1210 cells (오미자 면역조절작용 및 L1210 세포의 apoptosis 에 미치는 효과)

  • Kwon, Jin;Lee, Se-Jin;So, June-No;Oh, Chan-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.384-388
    • /
    • 2001
  • The effects of MeOH extracts of Schizandra chinensis fructus (SZX) on the immunoregulatory effect (lymphocyte proliferation, subpopulation, nitric oxide production, phagocytic activity) and apoptosis $(sub-G_1\;peak)$ of L1210 cells were examined. The proliferation of splenocytes and thymocytes were enhanced by the addition of $10\;{\mu}g/mL$ of SZX. SZX were administered p.o. once a day for 7 days in adult male BALB/c mice. SZX resulted in altering subpopulation of splenic B and/or T and thymic T lymphocytes, especially the number of $T_H$ cells were markedly increased by the treatment of SZX in vivo and in vitro. SZX treatment induced the apoptotic cell death in L1210 mouse leukemia cells. In addition, SZX accelerated the production of nitric oxide and phagocytic activity in peritoneal macrophages. These results suggest that SZX have an immunoregulatory property and anti-cancer action.

  • PDF

Antiproliferative Effect of Bacillus subtilis Fermented Soy Milk in AGS Human Gastric Adenocarcinoma Cells (Bacillus subtilis 발효두유의 AGS 인체 위암세포 증식억제 효과)

  • Seo, Hae-Ree;Kim, Ji-Young;Bae, Geun-Ho;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.644-648
    • /
    • 2009
  • Antiproliferative effects of soy milk fermented with Bacillus subtilis from chungkukjang was studied in AGS human gastric adenocarcinoma cells. The fermented soy milk by B. subtilis (B. subtilis-F-SM) exhibited 82% growth inhibitory effect at 2 mg/mL concentration, while non-fermented soy milk (Non-F-SM) showed 68%. B. subtilis-F-SM treated AGS cells induced more apoptotic bodies than the Non-F-SM treated cells. In mRNA expressions, B. subtilis-F-SM showed decreased expression of anti-apoptotic bcl-2 and increased expression of pro-apoptotic bax. The expressions of tumor suppressor genes of p53 and p21 were also increased. These results suggest that fermented soy milk by B. subtilis exhibited higher antiproliferative activities compared with non-fermented soy milk.

Radiation-induced Apoptosis is Differentially Modulated by PTK Inhibitors in K562 Cells (K562 백혈병 세포주에서 방사선에 의해 유도되는 Apoptosis에 미치는 PTK Inhibitors의 영향)

  • Lee Hyung Sik;Moon Chang Woo;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Jeong Hyeon;Lim Young kin;Park Heon Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • Purpose :The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive KS62 leukemia cell line was investigated. Materials and Methods :K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2×106 cells/mL. The cells were irradiated with 10 Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37$^{\circ}C$ for 0$\~$48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bel-2, bel-X$_{L}$ and bax protein levels. Results :Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electro-phoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bel-2 or bel-X$_{L}$ anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30$\~$40$\%$ at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. Conclusion : We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210$^{bcr/abl}$ failed to enhance the radiation induced apoptosis in KS62 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is attributable to bel-2 family. It is plausible that the relationship between cell cycle delays and cell death is essential for drug development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF

The Cell Cycle Dependence and Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line (SCK선암 세포주에서 방사선에 의한 Apoptosis와 세포 주기)

  • Lee Hyung Sik;Park Hong Kyu;Hur Won Joo;Seo Su Yeong;Lee Sang Hwa;Jung Min Ho;Park Heon Joo;Song Chang Won
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 1998
  • Purpose : The relationship between environmental PH on the radiation induced-apoptosis in SCK mammary adenocarcinoma cells and cell cycle dependence was investigated. Material and Methods : Mammary adenocarcinoma cells of A/J mice(SCK cells) in exponential growth phase were irradiated with a $l37^Cs$ irradiator at room temperature. The cells were irradiated 1 hour after the media was replaced with fresh media at a different pHs. After incubation at $37^{\circ}C$ for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and flow cytometry. The progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Bssults : The induction of apoptosis by irradiation in pH 6.6 medium was markedly less than that in pH 7.5 medium. When the cells were irradiated and maintained in pH 7.5 medium, the percentage of cells in $G_2/M$ phase rapidly increased to about $70\%$ at 12 h after an exposure to 120y and returned to control level by 36 h. The percentage of cells in G1 phase decreased as the percentage of cells in $G_2/M$ increased. On the other hand, in pH 6.6 medium the percentage of cells in G2/M phases gradually increased to about $45\%$ at 24 h after 12Gy irradiation and then slowly recessed and consequently, as much as $30-35\%$ of the cells were still in the Ga/M phase 48 h after irradiation. The percentage of cells in G1 phase then increased as the Ga/M arrest began to recede. The radiation-induced Ga/M arrest in PH 0.0 medium lasted markedly longer than that in pH 7.5 medium. Conclusion : Radiation-induced apoptosis in SCK tumor cells are reversely suppressed in an acidic environment. Radiation-induced Ga/M arrest is prolonged in an acidic environment indicating that the suppression of radiation-induced apoptosis and prolongation of radiation-induced Ga/M arrest in an acidic environment are related.

  • PDF

Smad6 Gene and Suppression of Radiation-Induced Apoptosis by Genistein in K562 Cells (K562 세포주에서 Genistein에 의해 억제되는 Radiation-induced Apoptosis의 조절 유전자)

  • Jeong, Soo-Jin;Jin, Young-Hee;Yoo, Yeo-Jin;Do, Chang-Ho;Jeong, Min-Ho;Huh, Gi-Yeong;Bae, Hye-Ran;Yang, Kwang-Mo;Moon, Chang-Woo;Oh, Sin-Geun;Hur, Won-Joo;Lee, Hyung-Sik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2001
  • Prupose : The genes involved on the suppression or radiation-induced apoptosis by genistein in K562 leukemia cell line was investigated. Materials and methods : K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For X-ray irradiation and drug treatment, cultures were prepared at $2\times10^5\;cells/mL$. The cells were irradiated with 10 Gy (Clinac 1800C, Varian, USA), Stock solutions of herbimycin A (HMA, Calbiochem, UK) and genistein (Calbiochem, UK) were prepared in dimethylsulfoxide (DMSO, Sigma, UK). After incubation at $37^{\circ}C$ for 24 h, PCR-select cDNA subtractive hybridization, dot hybridization, DNA sequencing and Northern hybridization were examined. Results : Smad6 gene was identified from the differentially expressed genes in K562 cells incubated with genistein which had been selected by PCR-select cDNA subtractive hybridization. The mRNA expression of Smad6 in K562 cells incubated with genistein was also higher than control group by Northern hybridization analysis. Conclusion : We have shown that Smad6 involved on the suppression of radiation-induced apoptosis by genistein in K562 leukemia cell line. It is plausible that the relationship between Smad6 and the suppression of radiation-induced apoptosis is essential for treatment development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF

Rosuvastatin Induces ROS-mediated Apoptosis in Human Prostate Cancer PC-3 Cells (Rosuvastatin이 유도하는 ROS가 전립선암 PC-3 세포주의 세포사멸 유도에 미치는 영향)

  • Choi, Hyeun Deok;Baik, Jong Jin;Kim, Sang Hun;Yu, Sun Nyoung;Chun, Sung Hak;Kim, Young Wook;Nam, Hyo Won;Kim, Kwang Youn;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • Statins, the inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used in treatments of hypercholesterolemia and newly known as anti-cancer effect of various cancer cells. Recently, several studies suggested that reactive oxygen species (ROS) play a critical role on cell death signaling. However, mechanism of ROS by rosuvastatin is currently unclear. This study aimed to explore the molecular mechanism of apoptosis by rosuvastatin in human prostate cancer PC-3 cells. Cell viability and apoptosis-related protein expression were measured by MTT assay and western blotting, respectively. In addition, the levels of apoptosis and ROS were analyzed. The results showed that rosuvastatin dramatically reduced cell viability in a dose- and time-dependent manner. We confirmed that rosuvastatin induced apoptosis through reduction of procaspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in PC-3 cells. In addition, rosuvastatin stimulated ROS production in a dose-dependent manner and pre-treatment with N-acetylcysteine (NAC), a ROS scavenger, significantly recovered rosuvastatin-induced ROS and apoptosis. Thus, we concluded that rosuvastain induces apoptosis through generation of ROS in human prostate cancer PC-3 cells and provides a promising approach to improve the efficacy of cancer therapy.

Effects of Platycodon grandiflorum on the Induction of Autophagy and Apoptosis in HCT-116 Human Colon Cancer Cells (길경 추출물에 의한 HCT-116 대장암 세포주에서의 autophagy와 apoptosis 유발 효과)

  • Hong, Su Hyun;Park, Cheol;Han, Min Ho;Kim, Hong Jae;Lee, Moon Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1244-1251
    • /
    • 2014
  • Platycodon grandiflorum (PG) has been known to possess many biological effects, including anti-inflammatory and anti-allergy activity and anti-obesity and hyperlipidemia effects. However, little research has been conducted regarding its anticancer effects, with the exception of its ability to stimulate apoptosis in skin cells. There has also been no study regarding PG-induced autophagy. The modulation of autophagy is recognized as one of the hallmarks of cancer cells. Depending on the type of cancer and the context, autophagy can suppress or help cancer cells to overcome metabolic stress and the cytotoxicity of chemotherapy. Therefore, the present study was designed to investigate whether or not extracts from PG-induced cell death were connected with autophagy and apoptosis in HCT-116 human colon cancer cells. PG stimulation decreased cell proliferation in a dose- and time-dependent manner and induced apoptosis, which was partially dependent on the activation of caspases. PG treatment also resulted in the formation of autophagic vacuoles simultaneously with regulation of autophagy-related genes. Interestingly, a PG-mediated apoptotic effect was further triggered by pretreatment with the autophagy inhibitors 3-methyladenin and bafilomycin A1. However, cell viability recovered quite well with bafilomycin A1 treatment. These findings show that PG treatment promotes both autophagy and apoptosis and that PG-induced autophagic response might play a role in the autophagic cell death of HCT-116 cells.

Effect of Oriental Anti-Stress Agent(Bohyulanshintang) on the Salivary Gland of Rats under Restraint Stress (보혈안신탕(補血安神湯)이 스트레스에 의한 백서 타액선 조직 변화에 미치는 영향에 관한 연구)

  • Ryu, Ho-Kyung;Chun, Yang-Hyun;Lee, Jin-Yong;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.3
    • /
    • pp.245-257
    • /
    • 1999
  • 일상 생활에서 우리는 스트레스에 항상 노출되어 있으며, 스트레스는 생체의 신경계, 내분비계 및 면역계의 변화를 수반한 항상성의 파괴로 수많은 정신적, 육체적 질병을 야기시킨다. 특히 구강안면영역에서도 다양한 구강점막질환과 구강건조증 등을 발생시킨다. 스트레스를 제거하는 방법으로는 약물요법 및 상담, 명상요법, 종교요법 등 다양한 방법이 제시되고 있는데, 다소의 부작용이 나타나거나 꾸준히 시행하기가 쉽지 않으며 스트레스의 원인을 근본적으로 제거하기가 현실적으로 용이하지 않은 경우가 많아 스트레스에 대한 해결책에 대하여 많은 관심이 집중되고 있다. 이에 본인은 스트레스가 가해졌을 때 백서 악하선에서 관철되며 apoptosis에 대하여 세포보호작용을 하는 clusterin(SGP-2)을 이용하여 구속스트레스를 가하기에 앞서 오랫동안 경험적으로 사용되어 왔고 부작용이 적은 전통약물인 보혈안신탕을 투여하고 스트레스에 의한 타액선의 조직변화를 관찰하여 그 효과를 확인해 보고자하였다. Sprague-Dawley계 응성 백서(200-230g/bw) 33마리를 정상 대조군(3마리), 구속스트레스군(15마리) 및 보혈안신탕 투여 후 구속스트레스군(15마리)으로 나누고 이틀을 각각 구속장치에 구속한 후 0, 1, 3, 5, 7일에 회생시켜 악하선을 적출하였으며, 면역조직화학법 및 Northern Blot을 이용하여 clusterin의 변화를 관찰하였다. 그 결과는 다음과 같다. 1. 구속스트레스군의 악하선 조직에서 clusterin 단백질과 mRNA는 실험 즉일군에서만 미약하게 관찰되었으며 실험 3일과 5일 후에 핵붕괴 및 핵농축 등의 핵변화를 동반한 apoptosis가 관찰 되었다. 2. 보혈안신탕 투여 후 구속스트레스군의 악하선 조직에서 실험 5일군까지 clusterin 이 증가한 후 실험 7일군에서는 감소하였다. 3. 보혈안신탕 투여 후 구속스트레스군의 악하선 조직에서는 apoptosis가 관찰되지 않았다. 4. 보혈안신탕 투여 후 구속스트레스군의 악하선 조직에서 clusterin mRNA가 실험 전군에 걸쳐 미약하게 관찰되었다. 이상의 결과로 타액선 조직은 스트레스 단백질인 clusterin을 생산하여 세포를 보호함으로써 스트레스 상황에 적응하지만, 생리적 적용한계를 넘는 스트레스에 노출될 때는 apoptosis됨이 확인되었다. 그리고 보혈안신탕은 스트레스 상황에서 세포의 생리적 적응력을 높여 세포의 apoptosis를 억제하는 효과를 나타냄이 확인되었다. 따라서 본 연구결과는 구강건조증등의 스트레스성 타액선 질환의 병리기전을 규명하는데 도움이되리라 생각되며, 향후 항스트레스 효과를 가진 보혈안신탕등의 한약재를 임상에 적용함으로써 스트레스로 인한 신체의 병리적 변화를 다소나마 차단할 수 있을 것으로 사료된다.

  • PDF

Conjugated Linoleic Acid Induces Apoptosis by Activating AMPK in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포에서 AMPK 활성에 의한 conjugated linoleic acid의 apoptosis 유도에 관한 연구)

  • Lin, Sun-Kyo;Kim, Hyun-Sook;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1679-1685
    • /
    • 2008
  • Conjugated linoleic acid (CLA) is a naturally occurring compound found in dairy and beef products. It has been shown to suppress cancer cells and to induce apoptosis. Practically, there is emerging evidence that CLA can inhibit chemically induced carcinogenesis in various tissues. However, the molecular mechanisms of CLA on human MCF-7 breast cancer cells have not been clearly explained yet. In this report, we investigated the anti-cancer activity of CLA in MCF-7 cells. It was found that CLA could inhibit the growth of the MCF-7 cells and induce apoptosis, through modulating AMP-activated protein kinase (AMPK) and cyclooxygenase-2 (COX-2). AMPK acts as a cellular fuel gauge and responds to decreased cellular energy status by inhibiting ATP-consuming pathways and increasing ATP-synthesis. CLA treatment with variable concentrations and different time of same-dose CLA on MCF-7 cells resulted in a strong activation of AMPK and an inhibition of COX-2 expression. It supports that CLA induces apoptosis in CLA-treated MCF 7 cells. Therefore, the effects of CLA induced COX-2 expression via activating AMPK can provide new possibility into the understanding the molecular mechanisms of anti-cancer component.