• Title/Summary/Keyword: Apis mellifera L.

Search Result 78, Processing Time 0.028 seconds

Anti-nosemosis Activity of Artemisia dubia and Aster scaber

  • Dae Yoon Kim;Hui Jin Park;Jae Kwon Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.6-6
    • /
    • 2023
  • Nosemosis is one of the most common protozoan diseases of adult bees (Apis mellifera). Nosemosis is caused by two species of microsporidia; Nosema apis and Nosema ceranae. Nosema ceranae is potentially more dangerous because it has the ability to infect multiple cell types, and it is now the predominant microsporidian species in A. mellifera. In this study, we identified two anti-nosemosis plants, Aster scaber and Artemisia dubia, which reduced the spore development of N. ceranae in spore-infected cells. We intend to establish the anti-nosemosis activity of aqueous, ethyl acetate (EA), and butanol (BuOH) extracts of A. dubia and A. scaber. In order to determine the optimal dose, we did in vitro and in vivo toxicity for all the extracts and carried out anti-nosemosis experiments. Although all of the extracts (aqueous, EA, and BuOH) showed in vitro and in vivo anti-nosemosis activity in a dose-dependent manner, the aqueous extracts of A. dubia and A. scaber showed more potent anti-nosemosis activity than the EA and BuOH extracts. And then, we isolated five phenolic compounds [chlorogenic acid, 3,4-dicaffaeoylquinic acid (3,4-DCQA), 3,5-dicaffaeoylquinic acid (3,5-DCQA), 4,5-dicaffaeoylquinic acid (4,5-DCQA), and coumarin] from A. dubia, A. scaber, and A. dubia + A. scaber aqueous extracts and screened for their toxicities and anti-Nosema effects in both in vivo and in vitro conditions. Among these five compounds, coumarin, chlorogenic acid, and 4,5-DCQA exhibited less toxic but more potent anti-Nosema effects than the other two compounds. Especially, chlorogenic acid and coumarin showed prominent anti-Nosema activities even at the lowest concentration (10 ㎍/mL). They might have potential to be developed as alternative compounds for the control of Nosema disease.

  • PDF

Comparison of the pollinating activities according to number of combs per honeybee (Apis mellifera) hive released in the strawberry (Seolhyang var.) vinyl-houses (서양종꿀벌(Apis mellifera L.) 소비매수별 시설딸기(설향) 화분매개활동 비교)

  • Lee, Sang-Beom;Yoon, Hyung-Joo;Kang, Seok Woo;Kwon, Jae Seok;Park, Ki-Kwan
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • This study was examined the pollinating activity and the economical effect according to numbers released of Apis mellifera in the $825m^2$ strawberry (Seolhyang var.) vinyl-houses. The time-zone of pollinating activity relative to numbers of honeycomb released at the strawberry (Seolhyang var.) vinyl-houses was together from 9A.M. to 4P.M., and the peak time of pollinating activity was 11A.M.. The effects on pollinating activity relative to the honeycomb numbers in the honeybee hive released at the strawberry houses were ordered 5 honeycombs (11,000 heads), 4 honeycombs (8,800 heads) and 3 honeycombs (6,600 heads). The rate of workers lost in A. mellifera hives with 5 honeybee combs and 4 honeycombs during the strawberry cultivating period were lower than that of 3 honeycombs. The rates of fruit set by pollinating activity relative to the honeycomb numbers in the honeybee hive released at the strawberry vinyl-houses were same level with over 98%. The fruit qualities; No. of seeds, sugar content and rate of normal fruit set were same level, but fruit weights were ordered 5 honeycombs in 37.2 g, 4 honeycombs in 35.6 g and 3 honeycombs in 32.6 g. The marketing incomes of 4 honeycombs and 5 honeycombs were 9% to 13% higher than that of 3 honeycombs, respectively. Therefore, when the strawberry (Seolhyang var.) was planted at $825m^2$ of a vinyl-houses, it was surveyed that the most suitable numbers of honeycomb were over 4 honeycombs (8,800 heads).

Detection of microbial organisms on Apis mellifera L. beehives in palm garden, Eastern Thailand

  • Sirikwan Dokuta;Sumed Yadoung;Peerapong Jeeno;Sayamon Hongjaisee;Phadungkiat Khamnoi;Khanchai Danmek;Jakkrawut Maitip;Bajaree Chuttong;Surat Hongsibsong
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats from microbial contaminants. Understanding and detecting microbial organisms in these beehives is essential for the preservation of bee health, honey production, and the broader ecosystem. However, the problem of microbial infection and antibiotic-resistant bacteria is more severe and continuously increasing, resulting in a health, economic, and social crisis. The purpose of this study is to determine the prevalence of microorganisms in A. mellifera beehives in palm gardens in Rayong province, Eastern Thailand. Results: Ten swabs in transport media were swabbed and obtained from different parts of each beehive (1 swab per beehive), for a total of 10 hives. Traditional microbial culture-based methods, biochemical tests, and antimicrobial susceptibility (disc-diffusion) tests were used to detect microbial organisms and antibiotic resistance in bacteria. The swab tests from nine beehives resulted in the detection of Gram-positive bacteria (63.64%), Gram-negative bacteria (27.27%), and fungi/yeast (9.09%). These microorganisms are classified as a group of coagulase-negative Staphylococcus spp. and made up 40.91% of the bacteria discovered. Other bacteria found were Coryneform bacteria (13.64%), Pantoea spp. (13.64%), Bacillus spp. (9.09%), yeast (9.09%), glucose non-fermentative Gram-negative bacilli (9.09%), and Pseudomonas spp. (4.55%). However, due to the traditional culture-based and 0biochemical tests usually used to identify the microbial organisms in clinical specimens and the limitation of identifying some environmental microbial species, the results of the antimicrobial susceptibility test cannot reveal if the organism is resistant or susceptible to the drug. Nevertheless, drug-sensitive inhibition zones were formed with each antibiotic agent. Conclusions: Overall, the study supports prevention, healthcare, and public health systems. The contamination of microorganisms in the beehives may affect the quality of honey and other bee products or even the health of the beekeeper. To avoid this kind of contamination, it is therefore necessary to wear personal protective equipment while harvesting honey and other bee products.

Acute Ecotoxicity Evaluation of Thyme White, Clove Bud, Cassia, Lavender, Lemon Eucalyptus Essential Oil of Plant Extracts (식물추출물 싸임화이트, 클로브버드, 계피, 라벤더, 레몬 유칼립투스 정유의 생태독성평가)

  • You, Are-Sun;Choi, Young-Woong;Jeong, Mi-Hye;Hong, Soon-Seong;Park, Yeon-Ki;Jang, Hui-Sub;Park, Jae-Yup;Park, Kyung-Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2011
  • Environment-friendly agro-materials tend to be preferred to chemical insecticides recently. For this reason, many studies were conducted to develop environment-friendly insecticides containing natural materials. The purpose of this study was to assess ecotoxicity for 5 plant essential oils (Thyme white, Clove bud, Cassia, Lavender, Lemon eucalyptus) expected to prevent from pests and be used for agro-materials. Target species used to assess acute toxicity were aquatic invertebrate (Daphina magna), fish (Oryzias latipes), honeybee (Apis mellifera L.) and earthworm (Eisenia fetida). The EC50 value, toxicological responses of thyme white, clove bud, and cassia to Daphina magna were 2.5, 2.8, and $6.9mg\;L^{-1}$ respectively and these values were moderately toxic according to standard of USEPA. $EC_{50}$ of Lavender and lemon eucalyptus were >$10mg\;L^{-1}$ then they were considered as slightly toxicity. In case of acute toxicity test to fish, $LC_{50}$ of thyme white and cassia were 6.7 and $7.5mg\;L^{-1}$ each other. The other plant essential oils indicated $LC_{50}$ >$10mg\;L^{-1}$. Acute contact and oral toxicity test to Honeybee were conducted. As a result, $LD_{50}$ of all essential oils were >$100{\mu}g$ a.i. $bee^{-1}$ in both of tests. In case of acute toxicity test to earthworm, $LC_{50}$ of thyme white, clove bud, cassia, lavender, and lemon eucalyptus were 149, 230, 743, 234, and $635mg\;kg^{-1}$, respectively. In conclusion, if the safety for earthworm is confirmed, 5 plant essential oils are expected to be use for environment-friendly insecticide materials with low risk against ecosystem and contribute to developing environment-friendly agro-materials.

Anti-Parasitic Activity of Lespedeza cuneata Extract on Causative Agent of Nosemosis Type C, Nosema ceranae

  • Song, Hyunchan;Kim, Hyekyung;Kim, Ki-Young
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.137-140
    • /
    • 2019
  • Although honeybees (Apis mellifera) are crucial for maintenance of the ecosystem, population of honeybee has been steadily decreasing due to diseases including nosemosis. Nosemosis is a disease caused by Nosema ceranae and is now considered as a major threat to honeybees. N. ceranae is a microsporidian that stays in form of spore even before the infection, which makes it harder to control than other pathogens. People are now aware of this parasite, however, cure and preventive candidates for nosemosis are hardly found until today. In this study, in vitro experiment of Lespedeza cuneata treatment to prevent nosemosis were done using Trichoplusia ni cell line, BTI-TN5B1-4. Normal T. ni cells exhibited round shape without abnormal size. On the other hand, when N. ceranae were treated, cells deteriorated and some cells abnormally enlarged due to N. ceranae infection. Interestingly, treatment of T. ni cells with L. cuneate extract protected abnormal cell shape induced by N. ceranae infection to normal shape. Some N. ceranae spores were observed outside of the cells. Effective concentration range for N. ceranae control were experimented. Lowest concentration which can control nosemosis were 50 ㎍/mL. When the concentration of L. cuneata extract was exceeded 200 ㎍/mL, cytotoxicity started to show up.

Analysis of Nutritional Compounds and Antioxidant Effect of Freeze-Dried powder of the Honey Bee (Apis mellifera L.) Drone (Pupal stage) (서양종 꿀벌(Apis mellifera L.) 수벌번데기 동결건조 분말의 영양학적 성분 및 항산화 효과)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Kim, Ji-Soo;Kim, Ho-Hyuk;Moon, Jae-Hak;Choi, Yong-Soo
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • In this study, we analyzed the nutritional ingredients of drone pupae (16th to 20th instar old) to evaluate the value of bee products and provide basic data for product diversification, and the extracts prepared using these pupae were tested for physiological activity. According to the analysis of the general ingredients of the freeze-dried powder of these bee pupae, the moisture, crude protein, crude fat, and crude ash was 1.69 ± 0.07%, 48.52 ± 0.20%, 23.41 ± 0.14%, and 4.05 ± 0.02%, respectively. Vitamin C and vitamin E were 14.92 ± 0.52 mg/100 g and 6.06 ± 0.11 mg α-TE/100 g, respectively. Regarding minerals, the highest content of K (1349.13 ± 34.57 mg/100 g) and P (1323.55 ± 43.85 mg/100 g) was observed and Ca and Fe were 55.43 ± 1.51 mg/100 g and 5.49 ± 0.19 mg/100 g, respectively. The fatty acids of the water extracted freeze-dried pupae powder accounted for approximately 59.62 of saturated fatty acids and 40.38 of unsaturated fatty acids, and high-quality fatty acids such as palmitic acid (C16:0) was 35.49 ± 0.08 and oleic acid (C18:1, n-9) was 35.91 ± 0.22 (g/100 g total fatty acids). The total amino acid content was 38.99 ± 2.63 g/100 g and the free amino acid was a total of 5129.04 mg/100 g, of which 1257.68 mg/100 g was proline and 759.12 mg/100 g glutamic acid. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the drone pupae extract showed values of 0.8 for distilled water extract, 3.2 for 50% EtOH extract, 6.4 for 70% EtOH extract, and approximately 90% for 32 ㎍/mL for 100% EtOH extract. These results suggest that the main compound contributing to the antioxidant activity is a polar compound, and it is highly likely to be a low-molecular protein or a free amino acid. In conclusion, the honey bee drone pupa is excellent as a food resource and can be utilized as a new functional material for food and functional food.

Utilization of Bombus terrestris as a Sweet Cherry Pollinator in Rain-sheltered Growing (생식용 체리 비가림 재배시 서양뒤영벌(Bombus terrestris L.)의 화분매개 곤충 활용)

  • Kwack, Yong-Bum;Kim, Hong-Lim;Choi, Young Hah;Lee, Jae Han
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.294-298
    • /
    • 2012
  • In sweet cherry (Prunus avium L.) growing there are several severe problem which have to be overcome to produce highly graded fruits because of fruit rots and fruit crackings, if there is frequent precipitation during immature fruit step and picking season. In order to reduce fungicide sprayings and produce qualified fruits in areas with rainy season like as South Korea, rain-sheltered growing is necessary absolutely. Sweet cherry blooms early to medium April in southern area of South Korea. If we depend on honeybees (Apis mellifera) distributed in natural ecosystem, it is not easy to get normal fruit-set every season because of low temperature around blooming time. And also bee keepers seldom sell honeybee hives as a pollinator during spring, instead they keep honeybee hives to get honey. Recently use of B. terrestris as a pollinator of cherry tomato, oriental pumpkin etc. grown in protected cultivation system increase abundantly. Therefore, in this study we studied B. terrestris as an alternate of honeybee to pollinate sweet cherry grown in rain shelter. In part of foraging activity B. terrestris shows staying on a cherry flower for about six second and visiting frequency of 11 flowers per minute. However A. mellifera stayed about 15 second on a flower and visited 4~5 flowers per minute. There were no significant difference in fruit-setting rate and fruit characteristics after using B. terrestris and A. mellifera as pollinators of sweet cherry. Consequently there is no negative effect when we use B. terrestris as an alternate pollinator of A. mellifera in sweet cherry cultivation under rain shelter.

Cytotoxic Effect of Bee (A. mellifera) Venom on Cancer Cell Lines

  • Borojeni, Sima Khalilifard;Zolfagharian, Hossein;Babaie, Mahdi;Javadi, Iraj
    • Journal of Pharmacopuncture
    • /
    • v.23 no.4
    • /
    • pp.212-219
    • /
    • 2020
  • Objectives: Nowadays cancer treatment is an important challenge in the medical world that needs better therapies. Many active secretions produced by insects such as honey bees used to discover new anticancer drugs. Bee venom (BV) has a potent anti inflammatory, anti cancer and tumor effects. The aim of present study is evaluation of anticancer effects induced by Apis mellifera venom (AmV) on cell Lines. Methods: AmV was selected for study on cancer cell lines. Total protein, molecular weight and LD50 of crude venom were determined. Then, cells were grown in Dulbecco's Modified Eagle medium supplemented with 10% fetal bovine serum and 1% antibiotics. The A549, HeLa and MDA-MB-231 cell Lines were exposed by different concentration of AmV. The morphology of cells was determined and cell viability was studed by MTT assay. Evaluation of cell death was determined by and DNA fragmentation. Results: The results from MTT assay showed that 3.125 ㎍/mL of A549, 12.5 for HeLa and 6.25 ㎍/mL of MDA-MB-231 killed 50% of cells (p < 0.05). Morphological analysis and the results from hoescht staining and DNA fragmentation indicated that cell death induced by AmV was significantly apoptosis. Conclusion: The data showed that using lower dosage of AmV during treatment period cause inhibition of proliferation in time and dose dependant manner. Findings indicated that some ingredients of AmV have anticancer effects and with further investigation it can be used in production of anticancer drugs.

Honeybee Acute and Residual Toxicity of Pesticides Registered for Strawberry (딸기용 농약의 꿀벌에 대한 급성독성 및 엽상잔류독성)

  • Kim, Byung-Seok;Park, Yoen-Ki;Lee, Yong-Hoon;Joeng, Mi-Hye;You, Are-Sun;Yang, Yu-Jung;Kim, Jin-Bae;Kwon, Oh-Kyung;Ahn, Young-Joon
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.229-235
    • /
    • 2008
  • Lack of honey bee toxicity data for most pesticide products used for strawberry restricts to predict the adverse effects to foraging honey bee after treatment of pesticide in plastic house. This study was conducted to evaluate the actual risk of worker honey bees (Apis mellifera L.) through acute contact toxicity test, acute oral toxicity test and toxicity of residues on foliage test with 21 pesticide products. The mortality of honeybee sprayed with 6 pesticides including dichlofluanid WP showed significantly different from control at recommended application rate in acute contact toxicity test at 24 hours after treatment. Fenpropathrin EC and milbemectin EC treatment groups showed more than 25% mortalities at recommended application rate in acute oral toxicity test. In toxicity of residues on foliage test, only fenpropathrin EC treatment group showed more than 25% mortalities at 10 days after treatment at recommended application rate. It was concluded that the most toxic route to exposure for honey bee is direct contact exposure to sprayed pesticides. Safety interval for honey bee was established by concerning the results of these tests.

Mosquito Control Efficacy of a BtPlus Insecticide and Its Safety Assessment to Aquatic Environment (비티플러스 살충제의 모기 방제 효과 및 환경생물에 대한 안전성 평가)

  • Park, Youngjin;Ryu, Sungmin;Kwon, Bowon;Park, Chan;Kim, Jin;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.181-188
    • /
    • 2016
  • BtPlus is a group of biopesticides that are made of Bacillus thuringiensis and immunosuppressant. A new BtPlus that exhibits high insecticidal activity against mosquito larvae has been investigated in control efficacy in field conditions and its environmental safety against aquatic system. This study assessed the control efficacy of BtPlus against mosquito larvae with two different application methods. In aerial spraying application (100 mL per $3.3m^2$), BtPlus was effective at 50% or above formulation concentrations to control mosquito larvae. For a direct application to aqueous mosquito habitat, a semi-field mimicking paddy rice field was constructed. In this condition, BtPlus showed 80% and 100% control efficacies at 0.1% and 0.2% concentrations, respectively. BtPlus also showed 40% mortality against adults at 0.1% concentration in 10% sugar bait. However, its control efficacies against adults were much less than against larvae. Safety assessment of BtPlus against ecosystem was evaluated using young carp (Cyprinus carpio), a water flea (Daphnia magna), and a honey bee (Apis mellifera). BtPlus did not give any adverse effects on these nontarget organisms. Based on these results, BtPlus can be applied to control mosquitoes by direct aqueous application to paddy rice field.