Browse > Article
http://dx.doi.org/10.7585/kjps.2016.20.3.181

Mosquito Control Efficacy of a BtPlus Insecticide and Its Safety Assessment to Aquatic Environment  

Park, Youngjin (Department of Plant Medicals, Andong National University)
Ryu, Sungmin (Kyungnong Inc.)
Kwon, Bowon (Kyungnong Inc.)
Park, Chan (Kyungnong Inc.)
Kim, Jin (Kyungnong Inc.)
Kim, Yonggyun (Department of Plant Medicals, Andong National University)
Publication Information
The Korean Journal of Pesticide Science / v.20, no.3, 2016 , pp. 181-188 More about this Journal
Abstract
BtPlus is a group of biopesticides that are made of Bacillus thuringiensis and immunosuppressant. A new BtPlus that exhibits high insecticidal activity against mosquito larvae has been investigated in control efficacy in field conditions and its environmental safety against aquatic system. This study assessed the control efficacy of BtPlus against mosquito larvae with two different application methods. In aerial spraying application (100 mL per $3.3m^2$), BtPlus was effective at 50% or above formulation concentrations to control mosquito larvae. For a direct application to aqueous mosquito habitat, a semi-field mimicking paddy rice field was constructed. In this condition, BtPlus showed 80% and 100% control efficacies at 0.1% and 0.2% concentrations, respectively. BtPlus also showed 40% mortality against adults at 0.1% concentration in 10% sugar bait. However, its control efficacies against adults were much less than against larvae. Safety assessment of BtPlus against ecosystem was evaluated using young carp (Cyprinus carpio), a water flea (Daphnia magna), and a honey bee (Apis mellifera). BtPlus did not give any adverse effects on these nontarget organisms. Based on these results, BtPlus can be applied to control mosquitoes by direct aqueous application to paddy rice field.
Keywords
Aedes albopictus; biopesticide; BtPlus; Culex pipiens pallens; safety assessment;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y. (2011) Evaluation of insecticide resistance of vector mosquitoes. Seoul National University, Seoul, Korea.
2 Bravo, A., S. Likitvivatanavong, S. S. Gill and M. Soberon (2011) Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423-431.   DOI
3 Choi, S. Y., S. C. Oh, M. S. Cho, S. K. Paek, J. S. Kim, D. A. Kim, M. R. Gill, Y. N. Youn and Y. M. Yu (2007) Bioassay of environment-friendly insecticides for management of mosquito, Culex pipiens molestus. Kor. J. Appl. Entomol. 46:261-267.   DOI
4 Hoffmann, J. A. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7:4-10.   DOI
5 Jeong, Y. S. and D. K. Lee (2003) Prevalence and seasonal abundance of the dominant mosquito species in a large march near coast of Ulsan. Kor. J. Appl. Entomol. 42:125-132.
6 Kang, S. H., S. A. Jang, J. B. Han, D. K. Seo, C. H. Song, M. K. Kim, Y. L. Kim, S. H. Choi, I. K. Kim and G. H. Kim (2005) Comparative efficacy of mosquito repellents against Aedes albopictus (Diptera: Culicidae). Kor. J. Appl. Entomol. 44:243-249.
7 Kil, M. R., D. A. Kim, S. K. Paek, J. S. Kim, S. Y. Choi, D. Y. Jin and Y. N. Yu (2008) Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Kor. J. Appl. Entomol. 47:457-465.   DOI
8 Kim, E., S. Jeoung, Y. Park, K. Kim and Y. Kim (2015) Novel formulation of Bacillus thuringiensis for the control of brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). J. Econ. Entomol. 108:2556-2565.   DOI
9 Kim, S. K., Y. Flores-Lara and P. S. Stock (2012b) Morphology and ultrastructure of the bacterial receptacle in Steinernema nematodes (Nematoda: Steinernematidae). J. Invertebr. Pathol. 110:366-374.   DOI
10 Kim, Y. K., C. M. Lee, J. B. Lee and S. B. Bae (2012a) Seasonal prevalence of mosquitoes and ecological characteristics of Anopheline larval occurrence in Gimpo, Gyeonggi Province, Republic of Korea. Kor. J. Appl. Entomol. 51:305-312.   DOI
11 Kim, Y, D. Ji, S. Cho and Y. Park (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89:258-264.   DOI
12 Kim, H. C., K. W. Lee, R. S. Richards, S. S. Schleich, W. E. Herman and T. A. Klein (2003) Seasonal prevalence of mosquitoes collected from light traps in Korea (1999-2000). Kor. J. Entomol. 33:9-16.   DOI
13 Kudom, A. A. (2015) Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14:447.   DOI
14 Lee, W. J. and D. K. Lee (2004) Laboratory assessment of a formulated Bacillus thuringiensis var. israelensis against five medically important species of mosquito larvae in Republic of Kor. J. Asia Pac. Entomol. 7:133-136.   DOI
15 Lima, E. P., M. O. Goulart and M. L. Rolim Neto (2015) Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Health 15:858.   DOI
16 Park, Y. and Y. Kim (2000) Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46:1469-1476.   DOI
17 SAS Institute, Inc. (1989) SAS/STAT User's Guide, release 6.03 Ed. SAS Institute, Cary, NC.
18 Park, Y., S. Kumar, R. Kanumuri, D. Stanley and Y. Kim (2015) A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth. Insect Biochem. Mol. Biol. 66:13-23.   DOI
19 Park, Y. (2015) Entomopathogenic bacterium, Xenorhabdus nematophila and Photorhabdus luminescens, enhances Bacillus thuringiensis Cry4Ba toxicity against yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J. Asia Pac. Entomol. 18:459-463.   DOI
20 Park, Y., J. K. Jung and Y. Kim (2016) A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae). J. Econ. Entomol. In printed.
21 Seo, S., S. Lee, Y. Hong and Y. Kim (2012) Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78:3816-3823.   DOI
22 Seo, S. and Y. Kim (2011) Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50:171-178.   DOI
23 Seo, M. J., Y. J. Gil, T. H. Kim, H. J. Kim, Y. N. Youn and Y. M. Yu (2010) Control effects against mosquitoes larva of Bacillus thuringiensis subsp. israelensis CAB199 isolate according to different formulations. Kor. J. Appl. Entomol. 49:151-158.   DOI
24 Shrestha, S., Y. Hong and Y. Kim (2010) Two chemical derivatives of bacterial metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13:55-60.   DOI
25 U.S. Environmental Protection Agency (1991) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th Ed. USEPA, Cincinnati, OH.
26 Schaloske, R. H. and E. A. Dennis (2006) The phospholipase $A_2$ superfamily and its group numbering system. Biochimica et Biophysica Acta 1761:1246-1259.   DOI
27 Stanley, D. and Y. Kim (2014) Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33:20-63.   DOI
28 Stokes, B. A., S. Yadav, U. Shokal, L. C. Smith and I. Eleftherianos (2015) Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front. Microbiol. 6: 19. doi: 10.3389/fmicb.2015.00019.   DOI
29 Wang, Z. Q., H. Perumaisamy, M. Wang, S. Shu and Y. J. Ahn (2016) Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 72:897-906.   DOI
30 Yu, H. S. and H. C. Kim (1989) Integrated control of vector mosquitoes with native fishes (Aplocheilus and Aphyocypris) and Bacillus thuringiensis (H-14) in natural rice fields of Korea. Kor. J. Appl. Entomol. 28:167-174.