• Title/Summary/Keyword: Aphanizomenon bloom

Search Result 22, Processing Time 0.02 seconds

Occurrence and Succession Pattern of Cyanobacteria in the Upper Region of the Nakdong River : Factors Influencing Aphanizomenon Bloom (낙동강 상류 수역에서 남조류 발생과 천이패턴 - Aphanizomenon 속을 중심으로 -)

  • Ryu, Hui-Seong;Park, Hae-Kyung;Lee, Hae-Jin;Shin, Ra-Young;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.52-59
    • /
    • 2016
  • This study investigated the occurrences and succession patterns of harmful cyanobacteria, as well as environmental factors, during a 3-year period (September 2012 to August 2015) in the upper region of the Nakdong River around Sangju weir. A total of 27 cyanobacterial taxa were observed in this study, and classified into 26 species and 1 variety belonging to 11 genera, 5 families, and 3 orders. Cell density ranged from 24 to 42,001 cells/ml, with a geometric mean of 33 cells/ml, during the survey period. The dominant orders differed depending on the survey year; order Oscillatoriales in 2013, Chroococcales in 2014 and Nostocales in 2015. An Aphanizomenon bloom occurred in June 2015 at which time the highest cell density of 36,873 cells/ml was detected in the upper region of the Nakdong River, where as the Aphanizomenon spp. cell density (190-1,704 cells/ml) had been low prior to that time. An Aphanizomenon bloom also occurred at around the same time downstream in the Young River, a major inflow branch of the Nakdong River. The Aphanizomenon cell density along the Nakdong River increased markedly after joining of the YoungRiver, indicating that the Aphanizomenon bloom in the YoungRiver caused a bloom in the Nakdong River. Meteorological and environmental parameters, such as very low precipitation, higher water temperature, pH, and TP concentration, and lower TN/TP ratio, in May and June of 2015 than in 2013 and 2014 exerted marked effects on the Aphanizomenon bloom in June 2015 in the Young River.

Response of Growth and Toxigenicity to Varying Temperature and Nutrient Conditions in Aphanizomenon flos-aquae (Cyanophyceae) (환경조건에 따른 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 성장 반응 및 독소 생성)

  • Ryu, Hui-Seong;Shin, Ra-Young;Lee, Jung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.538-545
    • /
    • 2017
  • The purpose of this study is to investigate growth response and toxigenicity under various temperature and nutritional conditions, in order to understand the physioecological characteristics of Aphanizomenon flos-aquae, which is a bloom-forming cyanobacterium in the Nakdong River. The strain was inoculated into media under combinations of four temperatures (4, 12, 21, $30^{\circ}C$) and three nutrients (modified CB medium, P-depleted CB medium, N-depleted CB medium) for 28 days. The algae-inhibition tests were performed to assess the potential allelopathic effects of the strains' filtrates on the growth of four algae strains (Microcystis aeruginosa, Aulacoseria ambigua f. spiralis, Aphanizomenon flos-aquae, Scenedesmus obliquus). Toxin production of a strain was measured by Enzyme-Linked ImmunoSolbent Assay (ELISA). The optimal growth temperature (Topt) of strains was $19.9^{\circ}C$ ($18.3-21.2^{\circ}C$), and the temperature range for growth was from $-0.3^{\circ}C$ to $34.3^{\circ}C$. Specific growth rate (${\mu}$) in modified CB medium varied from 0.10 to $0.16day^{-1}$, and the maximum growth rate (${\mu}_{max}$) was $0.17day^{-1}$. Although growth curves under N-existed and N-depleted conditions were almost the same, growth under N-depleted condition was relatively slowed (${\mu}=0.09$ to $0.14day^{-1}$), with a decreased maximum cell density. However, growth under the P-depleted condition was restricted for all temperatures, Two stains of Aphanizomenon flos-aquae were confirmed as not producing toxins, because saxitoxin and cylindrospermopsin were not detected by ELISA. The exudates or filtrates from the Aphanizomenon flos-aquae (DGUC003) resulted in significant inhibition of algal growth on the Aulacoseira ambigua f. spiralis (DGUD001) and Aphanizomenon flos-aquae (DGUC001) (p < 0.01).

Dynamics of Bacterial Communities Analyzed by DGGE during Cyanobacterial Bloom in Daechung Reservoir, Korea (대청호 수화발생시기의 미생물 다양성 및 계통분류학적 분석)

  • Ko, So-Ra;Ahn, Chi-Yong;Lee, Young-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.225-235
    • /
    • 2011
  • The change of microbial communities during cyanobacterial bloom was comparatively analyzed by 16S rDNA PCR-DGGE in Daechung Reservoir during 2003~2005. Morphological analysis showed that Cyanophyceae dominated algal community in the bloom. Dominant cyanobacteria were Microcystis, Planktothrix (Oscillatoria), Phormidium and Anabaena. We used 16S rDNA-denaturing gradient gel electrophoresis (DGGE) profiles and phylogenetic affiliations of the DGGE bands to analyze the community structure and diversity of the predominant microbial community. The DGGE band patterns demonstrated that the most frequent bands were identified as Microcystis during the monitoring periods, Planktothrix also dominated on September 2003 and 2004, whereas Anabaena was showed a peak on September 2005 and Aphanizomenon on August 2003. DGGE and phylogenetic analysis provided us new information that could not be obtained by traditional, morphological analysis. The relationship between cyanobacteria and other aquatic bacteria can be traced and their genetic diversity also identified in detail.

Changes in Phytoplankton Community Structure after Floating-Islands Construction at a Small Pond (소규모 연못에서 식물섬 조성 후 식물플랑크톤 군집구조의 변화)

  • Lee, Eun Joo;Lee, Hyo Hye Mi;Kwon, Peter;Suck, Jung Hyun;Ryu, Ji Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The effects of floating islands on the changes in phytoplankton community structure were investigated in a small artificial pond. The floating islands planted with various emergent macrophytes covered 35% of total water surface area of the pond. Total 17 genera and 25 species of phytoplankton were found in the pond, of which Dinophyceae was 1 genera and 1 species, Cyanophyceae 1 genera and 1 species, Bacillariophyceae 6 genera and 8 species, and Chlorophyceae 9 genera and 15 species. Dominant phytoplanktons under floating islands were changed from Aphanizomenon sp. as a Cyanophyceae to Golenkinia radiata, Kirchneriella contorta and Micractinium pusillum as a Chlorophyceae for 56 days after the construction of floating islands on July 24, 2001. The changes of dominant phytoplanktons of the control without floating islands were similar to those under floating islands in July and August, but Aphanizomenon sp. was rapidly increased in the control sites in September. About 99% of the cell number of Aphanizomenon sp. was disappeared for a month after construction of floating islands. Species diversity of phytoplankton under the floating islands of Iris pseudoacorus was higher than those of other macrophytes as well as the control without floating islands. The cell numbers of Cyanophyceae and Chlorophyceae were fewer under the floating islands of I. pseudoacorus than those of other macrophytes. Our results showed that the floating islands could be a useful eco-technique for the control of water bloom by Cyanophyceae and Chlorophyceae in a pond ecosystem.

Long-term Preservation of Bloom-forming Cyanobacteria by Cryopreservation

  • Park, Hae-Kyung
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 2006
  • Long-term preservation of bloom-forming cyanobacteria was evaluated using cryopreservation and freeze-drying of nine strains belonging to four genera and seven species. All test strains, except Aphanizomenon flos-aquae NIER- 10028, showed partial or complete survival following cryopreservation and freeze-drying. Frozen and freeze-dried strains were preserved for more than two years and were revived monthly. Most strains showed higher post-thaw viability after cryopreservation, especially without cryoprotectant compared to freeze-drying. Microcystis aeruginosa NIER-10010, M. viridis NIER-10020, M. ichthyoblabe NIER-10023, M. novacekii NIER-10029 and Oscillatoria sancta NIER-10027 were revived after 2.5 years of cryopreservation. These results suggest that cryopreservation may be an easy and timesaving long-term preservation method for bloom-forming cyanobacteria.

Analysis of Microbial Communities During Cyanobacterial Bloom in Daechung Reservoir by DGGE (DGGE를 이용한 대청호 수화 발생시기의 세균군집 분석)

  • Ko So-Ra;Park Seong-Joo;Ahn Chi-Yong;Choi Aeran;Lee Jung-Sook;Kim Hee-Sik;Yoon Byung-Dae;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.205-210
    • /
    • 2004
  • The change of bacterial communities during cyanobacterial bloom was analyzed by DGGE in Daechung Reservoir from July to October in 2003. The traditional morphological analysis showed that the genera of Microcystis, Chroococcus, Oscillatoria, and Phormidium were dominated. The most frequent band in the DGGE profile by 16S rDNA sequence analysis was identified as Microcystis flos-aquae and the cyanobacterial bloom was peaked on September 2. Oscillatoria spp. were also identified and Aphanizomenon flos-aquae dominated in the middle of August. Judging from the analysis of the digitalized DGGE profiles using the cluster analysis technique, the microbial community on September 2 was considerably different from others. Consequently, it seems that the gene fingerprinting method can give not only the similar results to the traditional morphological method but also additional information on the bacterial species and similarity among the examined microbial communities.

The Relationship between Water-Bloom and Distribution of Microorganisms That Inhibit the Growth of Cyanobacterium (Anabaena cylindrica) (수화와 시안세균(Anabaena cylindrica) 생장 억제 미생물 분포도의 상관관계)

  • Kim, Chul-Ho;Lee, Jung-Ho;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.188-193
    • /
    • 1998
  • The authors examined the variations of environmental factors, the distributions of cyanobacteria, heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica according to development and extinction of cyanobacterial bloom at a site in Daechung Dam reservoir. And certified the relationship between each other. Water temperature variated in a typical pattern. pH and concentrations of dissolved oxygen and chlorophylla was high in bloom period, and lowered with the decline of bloom. Phosphorus played as a growth-limiting factor at this study site. Total nitrogen concentration increased during blooming period, which indicated that nitrogen has been fixed by aquatic organisms such as cyanobacteria. Cyanobacteria distributed from June 17, and such cyanobacterial species as Anabaena spp., Aphanizomenon spp., Microcystis spp., Oscillatoria spp. and Phormidium spp. was detected during study period. Anabaena spp. distributed relatively highly distributed from July 23 to September 22, and disappeared completely at September 29. Heterotrophic bacterial and cyanobacterial populations varied inverse-proportionally. There was a relevancy between the variations of Anabaena spp., heterotrophic bacteria, and microorganisms that inhibit the growth of Anabaena cylindrica. Microorganisms that inhibit the growth of Anabaena cylindrica distributed from early growth phase of Anabaena spp. population to immediately after the extinction of Anabaena spp. With the population of Anabaena cylindrica growth-inhibiting microorganisms decreasing, increases of heterotrophic bacterial population followed it. Thease results indicate that microorganisms have a part in the extinction of cyanobacterial bloom, especially at its destroying period.

  • PDF

Spatial and Temporal Variations of Environmental Factors and Phytoplankton Community in Andong Reservoir, Korea (안동호에서 환경요인과 식물플랑크톤의 시.공간적 변동)

  • Park, Jae-Chung;Park, Jung-Won;Kim, Jong-Dal;Shin, Jae-Ki
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2005
  • Spatial and temporal variations of environmental factors and phytoplankton community were investigated in the three stations of Andong Reservoir in 1997 and 2003. The changes of physico-chemical water quality and phytoplanktonic biomass were higher in 2003 than that of 1997, due to rainfall difference. The concentration of total nitrogen (TN) and total phosphorus (TP) in the reservoir decreased, but total nitrogen fell relatively more between them. TN/TP ratio decreased from 109 to 90 showing no change at the downstream but a big decrease at the midand upstream. Predominant phylum of phytoplankton in Andong Reservoir were six genus that composed to Anabaena, Aphanizomenon and Microcystis of Cyanophyceae, Cosmarium and Scenedesmus of Chlorophyceae and Synedra of Bacillariophyceae, respectively. Among the observed phytoplankton, diatom Synedra occured as the maximum amount of 3,400 cells mL$^{-1}$ even at the above 30°C. Green algae Scenedesmus observed along with Microcystis. It seemed to be compete with Microcystis during the high water temperature period. Although trophic state of Andong Reservoir was decreased, the standing crops of phytoplankton were increased. Moreover bluegreen algae, Aphanizomenon and Microcystis in the region of upstream to midstream and diatom, Synedra in the region of midstream to downstream were increased until to reach the algal bloom, respectively. It seemed necessary to attention the changes of blue-green algae Aphanizomenon, that has an ability of nitrogen fixation.

The Calculation Method of Cell Count for the Bloom-forming (Green tide) Cyanobacterium using Correlation between Colony Area and Cell Number in Korea (군체 크기와 세포수 상관관계를 이용한 녹조 유발 남조류의 세포수 산정 방법)

  • You, Kyung-A;Song, Mi-Ae;Byeon, Myeong-Seop;Lee, Hae-Jin;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.350-357
    • /
    • 2014
  • Harmful Algal Bloom Alert System (HABAS) for drinking water supply is require to fast and accurate count as system monitoring of cyanobacterium occurrence and inducing a response action. We measured correlation between colony size and cell number including genus Anabaena, Aphanizomenon, Microcystis, Oscillatoria which are targeted at HABAS, deducted from standard formula, and suggested calculation method from colony size to the number of cell. We collected cyanobacteria samples at Han River (Paldang reservoir), Nakdong River (Dalseong weir, Changnyeonghaman weir) and Geum River (Gobok reservoir) from August to October, 2013. Also, we studied correlation between colony size and cell number, and calculated regression equation. As a result of correlation of harmful cyanobacteria by genus, Anabaena spp. and Aphanizomenon spp. having trichome showed high correlation coefficients more than 0.93 and Microcystis spp. having colony showed correlation coefficient of 0.76. As a result of correlation of harmful cyanobacteria by species, Anabaena crassa, Aphanizomenon flos-aquae, A. issatschenkoi, Oscillatoria curviceps, O. mougeotii having trichome showed high correlation coefficients from 0.89 to 0.96, and Microcystis aeruginosa, M. wessenbergii, M. viridis having colony showed correlation coefficients from 0.76 to 0.88. Compared with other genus Microcystis relatively showed low correlation because even species and colony size are the same, cell density and cell size are different from Microcystis strains. In this study, using calculated regression might be fast and simple method of cell counting. From now on, we need to secure additional samples, and make a decision to study about other species.

Developmental Characteristic of Cyanobacterial Bloom in Lake Daecheong (대청호의 남조세균 수화 발달 특성)

  • Park Jong-Geun
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.304-314
    • /
    • 2005
  • The occurrence of cyanobacterial bloom in Korean lakes of the summer is generalized. The characteristic of cyanobacterial community was explored. And the developmental stage of cyanobacterial bloom was divided into three phases, 'preparatory phase', 'bloom phase' and 'extinction phase' Cyanobacterial bloom started during the end of June at site 1, transition Bone of Lake Daecheong. The period of water bloom in normal year was about 60~70 days at site 4, lacustrine Bone, but it was unusually 11 days from July 19 in 1999. M. aerugilnosa first occurred in June, had a peak of standing crop curve from the end of August to the beginning of September in 1998 and 2002 and the end of July in 1999 and 2001. The standing crop of M. aeruginosa occupied $68.1\%$ of phytoplankton, $74.2\%$ of cyanobacteria and $88.8\%$ of genus Microcystis, Anabaena spp. first occurred in April, was above 10,000 cells $mL^{-1}$ from the end of August to about the middle of September in 1998. The effect of rainfalls on cyanobacterial bloom was different according to the phases. The rainfalls of preparatory phase assist the growth of cyanobacteria, but accelerate the decrease of cyanobacteria in extinction phase. In bloom phase, the heavy rainfalls reduce the development of the bloom, while the slight ones display only a little effects.