• Title/Summary/Keyword: Apertures

Search Result 153, Processing Time 0.026 seconds

Miniaturization and Transmission Efficiency Improvement of Resonant Aperture Structure (공진 개구 구조의 소형화 및 투과 효율 개선)

  • Yoo, Jong-Gyeong;Yeo, Junho;Ko, Ji-Whan;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • As a method of the transmission efficiency improvement of an aperture smaller than the wavelength, we modified the conventional H-shaped resonant aperture to lower the resonance frequency of resonant aperture, and the transmission efficiency of resonant aperture was improved more than the conventional aperture. The maximum transmission cross section(TCS) calculated using the equivalent circuit tends to be almost equal to the maximum TCS from the small resonant aperture modified to improve the transmission efficiency. The transmission characteristics of resonant apertures can be quantified as the TCS, and the transmission efficiency of that can be compared. The modified resonant aperture has a maximum TCS increased by about 2.87 times from $846mm^2$ to $2,431mm^2$ compared to the H-shaped aperture, and the resonant frequency decreased from 5.06 GHz to 2.92 GHz, and the length-to-wavelength ratio of the aperture was reduced from 0.178 to 0.103.

A Numerical Study on Characteristics of Solute Transport in a Rough Single Fracture with Spatial Correlation Length and Effect of Effective Normal Stress (공간적 상관길이와 유효수직응력의 효과에 따른 거친 단일 균열내의 용질이동특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • This study is to analyze numerically the spatial behaviors of the solute transport in a spatially correlated variable-aperture fracture under the effective normal stress conditions. Numerical results show that the solute transport in a fracture is strongly affected by the spatial correlation length of apertures and applied effective normal stress. According to increasing spatial correlation length, the mean residence time of solute is decreased and the tortuosity and Peclet number (is a dimensionless number relating the rate of advection of a flow to its rate of diffusion) is also decreased. These results mean that the geometry of the aperture distribution is favorable to the solute transport as the spatial correlation length is increased. However, according to the applied effective normal stress is increased, the mean residence time and tortuosity have a tendency to increase but the Peclet number is decreased. The main reason that the Peclet number is decreased, is that the solute is displaced by one or two channels with relatively higher local flow rate due to the increment of contact areas by increasing effective normal stress. Moreover, based on numerical results of the solute transport in this study, the exponential-type correlation formulae between the mean residence time and the effective normal stress are proposed.

  • PDF

The Study on the Pressure-Sensitive Adhesion Property of Waste FKM Powder and SBS Modified Asphalt (폐불소고무 분말과 SBS로 개질된 아스팔트의 점착 특성에 관한 연구)

  • Chung, Kyung-Ho;Kang, Min-Kyu;Han, Kyung-A
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.282-289
    • /
    • 2009
  • The pressure-sensitive adhesive(PSA) tapes are widely used as floor-sealing material in Korean constructive industry. However, the general PSA tapes can not seal the apertures completely. This is one of main reasons to cause imperfect finishing. In order to solve the problems, the asphalts were modified by FKM powder and SBS in this study. The physical properties of modified asphalts were examined by measuring the softening point, viscosity, tensile strength and adhesion strength of FKM and SBS modified asphalt. The softening point of SBS modified asphalt was increased greatly due to the formation of network structure in asphalt. Also, the change of adhesion strength of SBS modified asphalt with temperature was not so great comparing to those of pure asphalt and FKM modified asphalt. The best results of pressure-sensitive adhesion could be obtained by the SBS(linear) modified asphalt containing 6 wt.% of linear type SBS.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

Origins and Protective Schemes of Leaking Water into the Buddhist Triad Cave in Gunwi (군위 삼존석굴의 누수 원인과 방지대책)

  • Hwang, Sang Koo
    • Journal of Conservation Science
    • /
    • v.11 no.1 s.14
    • /
    • pp.15-27
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi, which consists of porphyritic biotite granite, has been deteriorated by a few weatherings. Origin of the weatherings is rain that can be leaked into the cave. Therefore the author investigates a few possible joints and bypasses leaking water, and reinforces any protective schemes for the rain influx. The porphyritic granite around the cave regularly develops two NEE and NWW joint sets. The NEE joint set could be divided into 4 joint zones among which $J_m\;and\;J_3$ may directly affect the leaking water into the cave. A extensional joint, in northern wall of the cave, runs through the $J_m$ joint zone. A small rain could rarely gets through the bypass, but a heavy rain has a good circulation through the joints to be leaked into the cave for a long time because of its long way. Many joints and cracks, in the ceiling near the cave entrance, immediately get to the $J_3$ joint zone, and have a good circulation of a small rain 10 mm. It is the desirable protective schemes that forbid rains to influx along the ranges from L -9 m to +10 m in the $J_m$ joint zone and upper half circle with radius 5 m in the $J_3$ joint zone. The joint apertures should be filled with a petro-epoxy and petro-filler to stop the water flow.

  • PDF

The homogenization analysis for permeability coefficients by fracture aperture variations (균질화 해석법을 이용한 단열 간극변화에 따른 투수계수 해석)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.47-60
    • /
    • 2004
  • The permeability coefficients were calculated by the homogenization analysis method with sufficient consideration of fracture geometry dependent on aperture change. According to the results of aperture measurements using a confocal laser scanning microscope, apertures on each measuring point display different magnitudes, indicating that fracture walls can not be assumed as parallel feature. After construction of fracture model based on the aperture values measured on each pressure level, the homogenization analysis was conducted to compute permeability coefficients. The calculated permeability coefficients distribute in the ranges of $10^{-1}~10^{-3}cm/sec$. Most of the specimens show decreasing permeability coefficients with the increase of the applied pressure. However, the decreasing rates of permeability coefficients do not show a constant trend on each pressure level. This phenomenon is well matched to the observation results of Chae et al. (2003). It proves that aperture change strongly influences on permeability characteristics. Three sections of each specimen have all different values of permeability coefficient. It suggests that the variation of permeability coefficient depends sensitively on aperture magnitudes and characteristics of fracture geometry. It is very important to consider accurate fracture geometries for analysis of permeability characteristics in rock fractures bearing different aperture distribution. Therefore, it needs to consider sufficiently the fracture geometries for calculating the permeability coefficients of fractures.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Anatomical Comparison of Compression, Opposite, and Lateral Woods in a Branch of Pinus parviflora S. et Z. (섬잣나무(Pinus parviflora S. et Z.) 지재의 압축이상재, 측면재, 대응재에 관한 해부학적 특성 비교)

  • Xu, Guang Zhu;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.38-47
    • /
    • 2005
  • Compression, lateral, and opposite woods in a branch of Pinus parviflora S. et Z. were described and compared in the qualitative anatomical aspects through light and scanning electron microscopy. Tracheid transition from earlywood to latewood in the compression wood appeared to be relatively more gradual than in the opposite or lateral wood. Growth ring width and proportion of latewood were thought to be greater in the compression wood than in the lateral or opposite wood. The latewood tracheids of compression wood in transverse surface were mostly round, differently from those of lateral and opposite woods with square to angular shapes. Also, intercellular spaces, helical cavities and checks, and slit-like pit apertures were observed only in the compression wood tracheids. Cross-field pitting in the compression wood appeared not to be used as diagnostic guide because of their severe alteration from normal fenestriform or window-like type to cupressoid to taxodioid types. In tangential surface, fusiform rays in the compression wood were wider but lower than those in the lateral wood or opposite wood. In conclusion, compression wood was different from lateral and opposite woods but lateral and opposite woods were almost identical in qualitative anatomical features.

A study on the actuator arrays of a deformable mirror for adaptive optics (적응광학계 변형거울의 구동기 배열에 따른 성능 변화 연구)

  • 엄태경;이완술;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.442-448
    • /
    • 2002
  • In the earth telescope for space observation, the adaptive optical (AO) system that immediately compensates atmospheric turbulence is helpful to get high-resolution images. An adaptive optics for earth telescopes is very attractive, since the Earth telescopes can be made at lower costs and have larger optical apertures than space telescopes. Generally. in order to remove the wavefront error produced by atmospheric turbulence, a deformable mirror, whose surface shape changes in a controllable way in response to a drive signal, is used. The characteristics and patterns of actuators are very important for the effective control of a deformable mirror. The mirror surface shape deformed by one actuator is defined as an influence function and the deformable mirror can be effectively modeled and designed using this influence function. In this paper. by simplifying the actual influence function obtained by FEM analyses into the Gaussian function and introducing the coupling coefficient between actuators, the influence function is constructed. The proper coupling coefficient of the target system can be obtained by performance analyses of a deformable mirror for various coupling coefficients. Using the constructed influence function, the deformable mirror with equally spaced triangular and square actuator patterns is analyzed for various spacings and an effective actuator pattern is proposed.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.