• Title/Summary/Keyword: Aperture detection

Search Result 166, Processing Time 0.023 seconds

Aircraft Motion Identification Using Sub-Aperture SAR Image Analysis and Deep Learning

  • Doyoung Lee;Duk-jin Kim;Hwisong Kim;Juyoung Song;Junwoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • With advancements in satellite technology, interest in target detection and identification is increasing quantitatively and qualitatively. Synthetic Aperture Radar(SAR) images, which can be acquired regardless of weather conditions, have been applied to various areas combined with machine learning based detection algorithms. However, conventional studies primarily focused on the detection of stationary targets. In this study, we proposed a method to identify moving targets using an algorithm that integrates sub-aperture SAR images and cosine similarity calculations. Utilizing a transformer-based deep learning target detection model, we extracted the bounding box of each target, designated the area as a region of interest (ROI), estimated the similarity between sub-aperture SAR images, and determined movement based on a predefined similarity threshold. Through the proposed algorithm, the quantitative evaluation of target identification capability enhanced its accuracy compared to when training with the targets with two different classes. It signified the effectiveness of our approach in maintaining accuracy while reliably discerning whether a target is in motion.

Design of online damage images detection system for large-aperture mirrors of high power laser facility based on wavefront coding technology

  • Fang, Wang;Qinxiao, Liu;Dongxia, Hu;Hongjie, Liu;Tianran, Zheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2899-2908
    • /
    • 2021
  • The laser transport system of the high power laser facility is mainly composed of large-aperture laser transport mirrors (TMs). Obtaining the high-resolution online damage images during the operation, which is of great significance for operating safely of the mirrors and the facility. Based on wavefront coding, pan-tilt scanning and image stitching technologies, an online laser-damage images detection system is designed, and it can achieve high-precision detection of surface characteristics of large-aperture laser transport mirrors. The preliminary simulation proves that the system can solve the depth of field matching problem caused by pan-tilt tilt imaging and achieve higher resolution.

A Study on Design Parameters for Ready-made Ear Shell of Hearing Aids (보청기용 범용 이어쉘을 위한 설계 파라미터에 관한 연구)

  • Urtnasan, Erdenebayar;Jeon, Yu-Yong;Park, Gyu-Seok;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1055-1061
    • /
    • 2011
  • In this study, main parameters: aperture, first bend and second bend which express a structure of ear canal are extracted in order to modeling and manufacture the ready-made ear shells of hearing aids. The proposed parameter extraction method consists of 2 important algorithms, aperture detection and feature detection. In the aperture detection algorithm, aperture of 3-D scanned virtual ear impression and parameters relating to ear shell of hearing aid are determined. The feature detection algorithm detects first bend, second bend, and related parameters. Through these two algorithms, parameters for aperture, first bend, and second bend are extracted to model the ready-made ear shell of hearing aid. The values of these extracted parameters from 36 people's right ear impression are analyzed and measured statistically. As a result of the analysis, it has been found that it is possible to classify ready-made ear shell parameters by age and size. The ready-made ear shell parameters are classified 3-size for 20 years old and 2-size for 60 years olde. Using 3D rhino program, virtual ready-made ear shell is reconstructed by parameters of every type, and simulated to model it. A final product was produced by transferring simulation result with rapid prototyping system. The modeled ready-made ear shell is evaluated with the objective and subjective method. Objective method is the comparison volume ratio and overlapped volume ratio of ear impression from randomly chosen 18 people and ready-made ear shell. And subjective method is that the final product of ready-made ear shell is used by users and the satisfaction number drawn from well fitting and comfortable testing was evaluated. In the result of the evaluation, it has been found that volume ration is 70%, big and middle size ready-made ear shell products are possible, and the satisfaction number is high.

Small Particle Detection System by Optical Scattering Effect (광 산란특성을 이용한 미세입자 감지시스템)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.579-583
    • /
    • 2012
  • We have designed the small particle detection system. The scatteing effect of light was used to detect small particle. The fabricated system consisted of laser diode, lens, pin hole, and photo detector. The aperture, lens, and photo detector were optimized to improve the performance of detection system. The fabricated detection system detected the scattered light by small particle entering into detection system and its response time was fast.

Improved Fusion Method of Detection Features in SAR ATR System (SAR 자동표적인식 시스템에서의 탐지특징 결합 방법 개선 방안)

  • Cha, Min-Jun;Kim, Hyung-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.461-469
    • /
    • 2010
  • In this paper, we have proposed an improved fusion method of detection features which can enhance the detection probability under the given false alarm rate in the prescreening stage of SAR ATR(Synthetic Aperture Radar Automatic Target Recognition) system. Since the detection features have the positive correlation, the detection performance can be improved if the joint probability distribution of detection features is considered in the fusion process. The detection region is designed as a simple piecewise linear function which can be represented by few parameters. The parameters for the detection region can be derived by training the sample SAR images to maximize the detection probability with the given false alarm rate. Simulation result shows that the detection performance of the proposed method is improved for all combinations of detection features.

Synthetic Aperture Radar Target Detection Using Multi-Cell Averaging CFAR Scheme (다중 셀 평균 기반 CFAR 검출을 이용한 SAR 영상 표적 탐지 기법)

  • Song, Woo-Young;Rho, Soo-Hyun;Jung, Chul-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.164-169
    • /
    • 2010
  • Since the range and Doppler resolution of the synthetic aperture radar(SAR) image becomes very high, the target detection accuracy can be significantly increased, but the computational burden is also increased. The conventional single-cell based CFAR detector performs the target detection on every single cell basis, thus it causes the serious increment of the computational load. In this paper, the improved two-step MCA-CFAR detector is proposed for the improvement of the target detection as well as the reduction of computational load: the first step is to use the MCA-CFAR, and the second step is to use the single-cell based CFAR detection in the expected target area for final decision. The performance of the proposed algorithm is compared with the conventional single-cell based CFAR and MCA-CFAR on SAR images.

A Case Study of Amplitude-Based Change Detection Methods Using Synthetic Aperture Radar Images (위성 레이더 영상을 활용한 강도 기반 변화탐지기술 활용 사례연구)

  • Seongjae Hong;Sungho Chae;Kwanyoung Oh;Heein Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1791-1799
    • /
    • 2023
  • The Korea Aerospace Research Institute is responsible for supplying and supporting the utilization of imagery data from the Arirang satellite series for organizations affiliated with the Government Satellite Information Application Consultation. Most of them primarily utilize optical imagery, and there is a relative lack of utilization of Synthetic Aperture Radar (SAR) imagery. In this paper, as part of supporting the use of SAR images, we investigated SAR intensity-based change detection algorithms and their use cases that have been researched to determine SAR intensity-based change detection algorithms to be developed in the future. As a result of the research, we found that various algorithms utilizing intensity difference, correlation coefficients, histograms, or polarimetric information have been researched by numerous researchers to detect and analyze change pixels and the applications of change detection algorithms have been studied in various fields such as a city, flood, forest fire, and vegetation. This study will serve as a reference for the development of SAR change detection algorithms, intended for utilization in the Government Satellite Information Application Consultation.

An efficient ship detection method for KOMPSAT-5 synthetic aperture radar imagery based on adaptive filtering approach

  • Hwang, JeongIn;Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.89-95
    • /
    • 2017
  • Ship detection in synthetic aperture radar(SAR)imagery has long been an active research topic and has many applications. In this paper,we propose an efficient method for detecting ships from SAR imagery using filtering. This method exploits ship masking using a median filter that considers maximum ship sizes and detects ships from the reference image, to which a Non-Local means (NL-means) filter is applied for speckle de-noising and a differential image created from the difference between the reference image and the median filtered image. As the pixels of the ship in the SAR imagery have sufficiently higher values than the surrounding sea, the ship detection process is composed primarily of filtering based on this characteristic. The performance test for this method is validated using KOMPSAT-5 (Korea Multi-Purpose Satellite-5) SAR imagery. According to the accuracy assessment, the overall accuracy of the region that does not include land is 76.79%, and user accuracy is 71.31%. It is demonstrated that the proposed detection method is suitable to detect ships in SAR imagery and enables us to detect ships more easily and efficiently.

Design and Development of a Single-photon Laser and Infrared Common Aperture Optical System

  • Wu, Hongbo;Zhang, Xin;Tan, Shuanglong;Liu, Mingxin;Wang, Lingjie;Yan, Lei;Liu, Yang;Shi, Guangwei
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • A single-photon laser and mid-wave infrared (MWIR) common aperture optical system was designed and developed to detect and range a long-distance civil aviation aircraft. The secondary mirror of the Ritchey-Chretien (R-C) optical system was chosen as a dichroic lens to realize the design of a common aperture system for the laser and MWIR. Point spread function (PSF) ellipticity was introduced to evaluate the coupling efficiency of the laser receiving system. A small aperture stop and narrow filter were set in the secondary image plane and an afocal light path of the laser system, respectively, and the stray light suppression ability of the small aperture stop was verified by modeling and simulation. With high-precision manufacturing technology by single point diamond turning (SPDT) and a high-efficiency dichroic coating, the laser/MWIR common aperture optical system with a 𝜑300 mm aluminum alloy mirror obtained images of buildings at a distance of 5 km with great quality. A civil aviation aircraft detection experiment was conducted. The results show that the common aperture system could detect and track long-distance civil aviation aircraft effectively, and the coverage was more than 450 km (signal-to-noise ratio = 6.3). It satisfied the application requirements for earlier warning and ranging of long-range targets in the area of aviation, aerospace and ground detection systems.

A Complex Valued ResNet Network Based Object Detection Algorithm in SAR Images (복소수 ResNet 네트워크 기반의 SAR 영상 물체 인식 알고리즘)

  • Hwang, Insu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.392-400
    • /
    • 2021
  • Unlike optical equipment, SAR(Synthetic Aperture Radar) has the advantage of obtaining images in all weather, and object detection in SAR images is an important issue. Generally, deep learning-based object detection was mainly performed in real-valued network using only amplitude of SAR image. Since the SAR image is complex data consist of amplitude and phase data, a complex-valued network is required. In this paper, a complex-valued ResNet network is proposed. SAR image object detection was performed by combining the ROI transformer detector specialized for aerial image detection and the proposed complex-valued ResNet. It was confirmed that higher accuracy was obtained in complex-valued network than in existing real-valued network.