References
- Armstrong, B., and H. Griffiths, 1991. CFAR detection of fluctuating targets in spatially correlated Kdistributed clutter, Proc. of F Radar Signal Processm IEEE, 138(2): 139-152. https://doi.org/10.1049/ip-f-2.1991.0020
- Alberola-Lopez, C., J.R. Casar-Corredera, and G. de Miguel-Vela, 1999, Object CFAR detection in gamma-distributed textured-background images, Proc. of Vision, Image and Signal Processing, IEE, 146(3): 130-136. https://doi.org/10.1049/ip-vis:19990236
- Buades, A., B. Coll, and J.M. Morel, 2005. A non-local algorithm for image denoising, Proc. of 2005 Computer Vision and Pattern Recognition, IEEE Computer Society Conference, San Diego, CA, June 20-26, vol. 2, pp. 60-65.
- Farr, T.G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf, 2007. The Shuttle Radar Topography Mission, Reviews of Geophysics, 45(2): RG2004. https://doi.org/10.1029/2005rg000183
- Hansen, V., 1973. Constant false alarm rate processing in search radars, Proc. of the Radar Present Future, London, October 23-25, pp. 325-332.
- Howard, D., S. Roberts, and R. Brankin, 1999. Target detection in SAR imagery by genetic programming, Advances in Engineering Software, 30(5): 303-311. https://doi.org/10.1016/S0965-9978(98)00093-3
- Kaplan, L.M., 2001. Improved SAR target detection via extended fractal features, IEEE Transactions on Aerospace and Electronic Systems, 37(2): 436-451. https://doi.org/10.1109/7.937460
- Khesali, E., H. Enayatu, M. Modiri, and M.M Aref, 2015. Automatic ship detection in single-Pol-SAR Image using texture features in artificial neural networks, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 40(1): 395-399.
- Ouchi, K., S. Tamaki, H. Yaguchi, and M. Iehara, 2004. Ship detection based on coherence images derived from cross correlation of multilook SAR images, IEEE Geoscience and Remote Sensing Letters, 1(3): 184-187. https://doi.org/10.1109/LGRS.2004.827462
- Rohling, H., 1983. Radar CFAR thresholding in clutter and multiple target situations, IEEE Transactions on Aerospace and Electronic Systems, 19(4): 608-621. https://doi.org/10.1109/TAES.1983.309350
- Souyris, J. C., C. Henry, and F. Adragna, 2003. On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry, IEEE Transactions on Geoscience and Remote Sensing, 41(12): 2725-2734. https://doi.org/10.1109/TGRS.2003.817809
- Van Zyl, J. J., 2001. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography, Acta Astronautica, 48(5-12): 559-565. https://doi.org/10.1016/S0094-5765(01)00020-0
- Werner, M., 2001. Shuttle radar topography mission (SRTM) mission overview, Frequenz, 55(3-4): 75-79. https://doi.org/10.1515/FREQ.2001.55.3-4.75
- Wang, X., and C. Chen, 2016. Adaptive ship detection in SAR images using variance WIE-based method, Signal, Image and Video Processing, 10(7): 1219-1224. https://doi.org/10.1007/s11760-016-0879-4
- Wang, C., M. Liao, and X. Li, 2008. Ship detection in SAR image based on the alpha-stable distribution. Sensors, 8(8): 4948-4960. https://doi.org/10.3390/s8084948
Cited by
- Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery vol.7, pp.9, 2017, https://doi.org/10.3390/app7090961
- Automatic Ship Detection Using the Artificial Neural Network and Support Vector Machine from X-Band Sar Satellite Images vol.10, pp.11, 2018, https://doi.org/10.3390/rs10111799
- Land Masking Methods of Sentinel-1 SAR Imagery for Ship Detection Considering Coastline Changes and Noise vol.33, pp.4, 2017, https://doi.org/10.7780/kjrs.2017.33.4.9
- Groundwater productivity potential mapping using frequency ratio and evidential belief function and artificial neural network models: focus on topographic factors vol.20, pp.6, 2017, https://doi.org/10.2166/hydro.2018.120
- 다목적실용위성 영상자료 활용 현황 vol.34, pp.6, 2017, https://doi.org/10.7780/kjrs.2018.34.6.3.1
- R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery vol.11, pp.6, 2017, https://doi.org/10.3390/rs11060631
- 다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰 vol.35, pp.5, 2017, https://doi.org/10.7780/kjrs.2019.35.5.1.10
- Ship Detection from X-Band SAR Images Using M2Det Deep Learning Model vol.10, pp.21, 2020, https://doi.org/10.3390/app10217751
- Performance Comparison of Oil Spill and Ship Classification from X-Band Dual- and Single-Polarized SAR Image Using Support Vector Machine, Random Forest, and Deep Neural Network vol.13, pp.16, 2017, https://doi.org/10.3390/rs13163203