• Title/Summary/Keyword: Aperiodic Task

Search Result 27, Processing Time 0.026 seconds

A Soft Aperiodic Real-Time Task Scheduling Algorithm Supporting Maximum Slack Time (최대여유시간 제공 연성 비주기 실시간 태스크 스케줄링 알고리즘)

  • Im, Deok-Ju;Park, Seong-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.4
    • /
    • pp.9-15
    • /
    • 2000
  • The purpose of this paper is to minimize the a slack computation time of the scheduling of a soft aperiodic real-time tasks in a fixed priority real-time system. The proposed algorithm reduces the computation overhead at on-line time and supports the maximum slack time assigned for aperiodic real-time tasks. The proposed algorithm has 10~20% more response time for aperiodic real-time tasks than that of Slack Stealing Algorithm that offers optimal response time in fixed priority real-time system. However, the performance of the proposed algorithm is seven times better in a scheduling overhead.

  • PDF

Design of a Real-time Sensor Node Platform for Efficient Management of Periodic and Aperiodic Tasks (주기 및 비주기 태스크의 효율적인 관리를 위한 실시간 센서 노드 플랫폼의 설계)

  • Kim, Byoung-Hoon;Jung, Kyung-Hoon;Tak, Sung-Woo
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.371-382
    • /
    • 2007
  • In this paper, we propose a real-time sensor node platform that efficiently manages periodic and aperiodic tasks. Since existing sensor node platforms available in literature focus on minimizing the usage of memory and power consumptions, they are not capable of supporting the management of tasks that need their real-time execution and fast average response time. We first analyze how to structure periodic or aperiodic task decomposition in the TinyOS-based sensor node platform as regard to guaranteeing the deadlines of ail the periodic tasks and aiming to providing aperiodic tasks with average good response time. Then we present the application and efficiency of the proposed real-time sensor node platform in the sensor node equipped with a low-power 8-bit microcontroller, an IEEE802.15.4 compliant 2.4GHz RF transceiver, and several sensors. Extensive experiments show that our sensor node platform yields efficient performance in terms of three significant, objective goals: deadline miss ratio of periodic tasks, average response time of aperiodic tasks, and processor utilization of periodic and aperiodic tasks.

Design of Scheduler Considering Real-Time Characteristic and Fault-Tolerant in Embedded System (임베디드 시스템에서 실시간성과 결함허용을 보장하는 스케줄러 설계)

  • Jeon, Tae-Gun;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.76-84
    • /
    • 2011
  • Embedded Systems need to ensure real-time of the task response time depending on the applied fields of it. And task could be faulty due to various reasons in real time systems. Therefore in this paper, we design a task scheduler that guarantees deadlines of periodic tasks and considers a fault tolerance of defective task in embedded system with a single processor. In order to provide real-time, we classify tasks with periodic/aperiodic tasks and applies RMS(Rate Monotonic Scheduling) method to schedule periodic tasks and can guarantees execution of aperiodic tasks by managing surplus times obtained after analyzing the execution time of periodic tasks. In order to provide fault tolerance, we manage backup times and reexecute a fault task to restore it's conditions.

Energy Aware Scheduling of Aperiodic Real-Time Tasks on Multiprocessor Systems

  • Anne, Naveen;Muthukumar, Venkatesan
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.30-43
    • /
    • 2013
  • Multicore and multiprocessor systems with dynamic voltage scaling architectures are being used as one of the solutions to satisfy the growing needs of high performance applications with low power constraints. An important aspect that has propelled this solution is effective task/application scheduling and mapping algorithms for multiprocessor systems. This work proposes an energy aware, offline, probability-based unified scheduling and mapping algorithm for multiprocessor systems, to minimize the number of processors used, maximize the utilization of the processors, and optimize the energy consumption of the multiprocessor system. The proposed algorithm is implemented, simulated and evaluated with synthetic task graphs, and compared with classical scheduling algorithms for the number of processors required, utilization of processors, and energy consumed by the processors for execution of the application task graphs.

Extended EDL Algorithm for Hard Aperiodic Task (경성 비주기 태스크에 대한 확장된 EDL 알고리즘)

  • Kim, Hyun-Soo;Kim, In-Guk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.487-490
    • /
    • 2003
  • 본 논문은 동적 우선순위 실시간 시스템에서 경성 종료시한을 갖는 비주기 태스크를 스케줄링하는 EDL 알고리즘을 확장하여 구현하였다. 동적 우선순위 방식의 비주기 태스크를 스케줄링 하는데 있어서 최적이라고 증명된 EDL 알고리즘이 갖고 있는 문제점인 실행되고 있는 비주기 태스크가 있으며 다음 비주기 태스크의 요청이 들어왔을 때 선행된 비주기 태스크의 종료시점에서 받아들이는 제약을 개선하고 경성 비주기 태스크들이 동시에 들어왔을 때의 응답시간을 시분할 방식을 이용하여 최소화하였다.

  • PDF

An Analysis on The Optimal Partitioning Configuration of Cache for Meeting Deadlines of Real-Time Tasks (실시간 태스크의 마감시간 만족을 위한 캐쉬 최적 분할 형태의 분석)

  • Kim, Myung-Hee;Joo, Su-Chong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2891-2902
    • /
    • 1997
  • This paper presents an analysis on the optimal partitioning configuration of cache (memory) for meeting deadlines of periodic and aperiodic real-time task set. Our goal is not only to decrease the deadline missing ratio of each task by minimizing the task utilization, but also to allocate another tasks to idle spaces of cache. For this reason, we suggest an algorithm so that tasks could be allocated to cache segments. Here, the set of cache segments allocated tasks is called a cache partitioning configuration. Based on how tasks allocate to cache segments, we can get various cache partitioning configurations. From these configurations, we obtain the boundary of task utilization that tasks are possible to schedule, and analyze the cache optimal partitioning configuration that can be executed to minimize the task utilization.

  • PDF

A Real-Time Scheduling Mechanism in Multiprocessor System for Supporting Multimedia (멀티미디어 지원을 위한 다중 프로세서 시스템에서 실시간 스케줄링 기법)

  • 임순영;이재완;전칠환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.159-168
    • /
    • 1997
  • This paper presents a mechanism which supplies tasks with fast turn-around time on real-time multimedia environments. Tasks are classified into periodic and aperiodic tasks according to their executing period, and the types of them are classified into three groups : critical tasks, essential tasks and common tasks by the degree of its urgency. In the case of periodic tasks, we defer the execution of it within the extent to keep the deadline as long as possible and serve the aperiodic tasks, and provide aperiodic tasks with fast turn-around time. Changing the priority of each task is allowed within the same type and it is scheduled by using the dynamic priority. The emergency tasks are executed within deadline in any circumstances, and the least laxity one is served first when many real-time tasks are waiting for execution. The result of simulation shows that the proposed mechanism is better than the EDZL, known as suboptimal in multiprocessor systems, in the point of rum-around time.

  • PDF

An EDF Based Real-Time Scheduling Algorithm for Imprecise Computation (불확정 계산을 위한 EDF 기반의 실시간 스케줄링 알고리즘)

  • Choi, Hwan-Pil;Kim, Yong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.18A no.4
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents an EDF based scheduling algorithm for scheduling imprecise computation model where each task consists of mandatory part and optional part. Imprecise computation is useful to manage overload condition. In overload situation, some optional parts should be removed. The proposed DOP algorithm removes optional parts of earlier deadline tasks to enhance flexibly for newly arriving tasks. A simulation result shows that DOP has better performance than other algorithms.

An Energy-Efficient Hybrid Scheduling Technique for Real-time and Non-real-time Tasks in a Sensor Node (센서 노드에서 에너지 효율적인 실시간 및 비실시간 태스크의 혼합 스케줄링 기법)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1820-1831
    • /
    • 2011
  • When both types of periodic and aperiodic tasks are required to run on a sensor node platform with limited energy resources, we propose an energy-efficient hybrid task scheduling technique that guarantees the deadlines of real-time tasks and provides non-real-time tasks with good average response time. The proposed hybrid task scheduling technique achieved better performance than existing EDF-based DVS scheduling techniques available in the literature, the FIFO-based TinyOS scheduling technique, and the task-clustering based non-preemptive real-time scheduling technique.

On-line Schedulability Check Algorithm for Imprecise Real-time Tasks (부정확한 실시간태스크들을 위한 온라인 스케쥴가능성 검사 알고리즘)

  • Gi-Hyeon Song
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1167-1176
    • /
    • 2002
  • In a (hard) real-time system, every time-critical task must meet its timing constraint, which is typically specified in terms of its deadline. Many computer systems, such as those for open system environment or multimedia services, need an efficient schedulability test for on-line real-time admission control of new jobs. Although various polynomial time schedulability tests have been proposed, they often fail to decide the schedulability of the system precisely when the system is heavily loaded. Furthermore, the most of previous studies on on-line real-time schedulability tests are concentrated on periodic task applications. Thus, this paper presents an efficient on-line real-time schedulability check algorithm which can be used for imprecise real-time system predictability before dispatching of on-line imprecise real-time task system consisted of aperiodic and preemptive task sets when the system is overloaded.

  • PDF