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ABSTRACT

In a (hard) real-time system, every time-critical task must meet its timing constraint, which is typically
specified in terms of its deadline. Many computer systems, such as those for open system environment or
multimedia services, need an efficient schedulability test for on-line real-time admission contol of new jobs.
Although various polynomial time schedulability tests have been proposed, they often fail to decide the
schedulability of the system precisely when the system is heavily loaded. Furthermore, the most of previous
studies on on-line real-time schedulability tests are concentrated on periodic task applications. Thus, this paper
presents an efficient on-line real-time schedulability check algorithm which can be used for imprecise real-time
system predictability before dispatching of on-line imprecise real-time task system consisted of aperiodic and
preemptive task sets when the system is overloaded.

(34) ANTAEH SlojM, ZE 198 Bi2as Wl ke Az ASzie FHEAA ok
MEAEE @0t HErYe] MulAES A7 AEH T2 B FFEASHED 2E9eE =¥de
A2e ALES 8T F Y=k gkl diFd AAE AolE AT B3 2AETY AAE FeE
gtk HE AF7AA A AAEREE e 2AFE T AAREC] AdH AR g A&
el 437 ARt dgdole o] A 2AE 7Fede FF YA BANA 2IT. ¢Sl &
21 AN 2AETFs AR oiM 9 tiREY] dFE0] #7148 HaA SEE AFHY Utk

TP B =RME Alxdle AR BT o vFY)Ho AYrhsd Blaa JFER FHE B
g3 229 AARE Haa f‘l’*Eél-Q AY3}7] o]l 2AETFERAE 45T e BEHA 2] 4
Azt 2A1E 7k AA e EE A

* A9 ARANE FI9AET wgp =244 :2002. 8. 6.
AR ;2002 12, 10.



1168 WRAFEHEEHEFTEE #HIEE '2002. 9, Vol. 3, No. 9, September

1. Introduction

In a (hard) real-time system, every time-critical
task must meet its timing constraint, which is
typically specified in terms of its deadline. It is
essential for every time-critical task to complete its
execution and produce its result by its deadline.
Otherwise, a timing fault occurs, and the result
produced by the task is of litle or no use.
Unfortunately, many factors, such as variations in
algorithms  and
congestion on the communication network, make

processing times of dynamic
meeting all timing constraints at all times difficult.
An approach to minimize this difficulty is to
trade off the quality of the results produced by the
tasks with the amounts of processing time required
Such a tradeoff can be
theimprecise

to produce the results.
realized by using

technique[6].
each task can be divided into two parts, a
mandatory part and an optional part. When system
load is normal, the optional part is executed and

computation
In the imprecise computation model,

the computation produces a precise result. On
overloaded conditions, however, all or portion of
optional part is skipped to conserve system
resources for the mandatory parts of other tasks.
The imprecise computation sacrifices accuracy to
meet the deadlines of mandatory parts.

On the other hand, many computer systems, such
as those for open system environment or multimedia
services, need an efficient schedulability test for
on-line real-time admission contol of new jobs.
Efficient on-line real-time schedulability tests are
also useful to various service-critical systems, such
as tele-medicine systems, tele-conferencing systems,
and multimedia services that have Quality-of-Service
(QoS) requirements  [5]. Although
polynomial time schedulability tests [1, 2, 3, 4, 8]
have been proposedthey often fail to decide the

various

schedulability of the system precisely when the
system is heavily loaded. Furthermore, the most of
previous studies on on-line real-time schedulability
tests [1, 2, 3, 4, 8] are concentrated on periodic
task applications.

Thus, this paper presents efficient on-line
real-time schedulability check algorithm which can
be used for real-time system predictability before
dispatching of on-line
consisted of aperiodic and preemptive task sets for

real-time task  system
the aim of minimization of total error, minimization
of the maximum or average error, minimization of
the number of discarded optional tasks, minimization
of the number of tardy tasks, and minimization of
average response time when the system is
overloaded.

The rest of this paper is organized as follows.
Section 2 introduces related work. Section 3
provides problem formulation. Section 4 presents
the on-line schedulability check algorithm for
imprecise real-time systems. Section 5 and 6 show

numerical example and the conclusion, respectively.

2. Related Work

A system is underloaded if there exists a schedule
that will meet the deadline of every task and overloaded
otherwise. Scheduling underloaded systems is a
well-studied topic, and several on-line algorithms have
been proposed for the optimal scheduling of these
systems on a uniprocessor [10, 11]. Examples of such
algorithms  include earliest-deadline-first (ED) and
smallest-slack-time  (SL). However, none of these
classical algorithms make performance guarantees during
times when the system is overloaded. In fact, Locke has
experimentally demonstrated that these algorithms perform
quite poorly when the system is overloaded [12].

Practical

systems are prone to intermittent
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overloading caused by a cascading ofexceptional
situations. A good on-line scheduling algorithm,
therefore, should give a performance guarantee in
overloaded as well as underloaded circumstances.

Although various polynomial time schedulability
tests [1, 2, 3, 4, 8] have been proposed, they often
fail to decide the schedulability of the system
precisely when the system is heavily loaded.
Furthermore, the most of previous studies on on-line
real-time schedulability tests [1, 2, 3, 4, 8] are
concentrated on periodic task applications. Recently,
[9] presents efficient on-line schedulability tests, but
it is for priority driven real-time systems.

Therefore, when the system is heavily loaded,
previous studies [1, 2, 3, 4, 8, 9] can not help
having limitation even though they show the best
possible  competitive factors of the on-line
schedulers. So, in this paper, the imprecise
computation model is adopted.

3. Problem Formulation

Assume that at an instant, there are identically

arrived IV preemptive imprecise tasks running on a
single processor and they are sorted according to

their  deadlines, d sd, <K £d,  <d,. The

restrictive simultaneous-arrival assumption also was
used in the top-level scheduling of the two-level
approach proposed in [7]. In [7], the top-level
scheduling algorithm invoked at every task arrival
allocates service times to the tasks, and the
low-level scheduling algorithm actually schedules the
tasks and provides them with the allocated service
times.

Let an imprecise task T, be composed of the

mandatory part M, and the optional part 0.‘, and

characterized by its arrival time ¥; | deadline di,
0 for M

Let Pi be the sum of 7%

and computational requirement 7% and
and Oi, respectively.
and O:. Let Y be the service time assigned to

task iduring interval J [dj—l’ dj]. Then the
total amount of service time allocated to each task

Y.,

=l

T s represented as Yi. That is, Vi is
since Vi becomes zero when J @1,

A schedule determines the amount of service

time to be given to each task T, during the
schedulable interval which is defined as an interval
between the task’s arrival time and its deadline. In
this paper, it is interested in schedulability test of
on-line real-time tasks. In the schedulability test,
only mandatory part computational requirements are
considered when the real-time system is overloaded.

That is, the problem can be formulated as the
following [Fig. 1.

Compute ¥, for1<isSN
Subject to

N

1y Z Ve, Sd;=d, J=LAN
k=j

2yy,2m i=LAN

HySp i=LAN
4yr,, 20 1< <isN

[Fig. 1] Problem formulation of on-line real-time
schedulability check

The first constraint simply states that the sum of
service times actually given to all schedulable
task(s) in each interval is equal to or less than the

length of the interval. The second constraint
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ensures that the mandatory part of each task be
always scheduled. The third constraint implies that
the service time actually given to each task can not
The last
constraint says that a non-negative amount of

exceed the computational requirement.

service time is allotted to each task in each
schedule interval.

4. On-line Schedulability Check Algorithm

In this section, a two-levelschedulability check
policy which is composed of top-level schedulability
check and low-level scheduling is proposed. In the
top-level schedulability check which is executed
whenever a new task amrives, determines the amouat
of mandatory processing timesto be allocated to ail
schedulable tasks at that instant and checks whether
the mandatory computational requirements of the all
schedulable tasks are satisfied or not. The
low-level scheduling algorithm actually schedules
tasks into service.

The maximumof service time is bounded by that
obtained by the top-level algorithm. The amount of
mandatory execution time that each task receives
actually depends on the arrival time of new tasks.
In other words, the amount of service time
determined by the top-level algorithm is valid only
until the next new task’s amival. The on-line
real-time schedulability check algorithm of this
paper is proposed as following [Fig. 2].

In the above algorithm, whenever a on-line task

T, arrives, the “DetermineRunningTasks(i)” function

determines schedulable tasks at 1; arrival, then the
“SortTaskByDeadline()”  function  sorts the
schedulable tasks by deadlines on ascending order.

then the “ConstructIntervals (i )”function constructs
intervals of the schedulable tasks. Next, the
top-level schedulability check algorithm called as
“TopLevelSchedulabilityCheck()” is performed.

Algorithm OnLineSchedulability()
For  =1to N

Call DetermineRunningTasks (7)
Call SortTaskByDeadline ()
Call ConstructIntervals (7;)

Call LowLevelScheduling (7, 1}, )

Call RecomputeMi()

Next 1
End Algorithm

OnCheck = TopLevelSchedulabilityCheck()
If (OnCheck = False) Then “Exit Algorithm”

‘ determine schedulable tasks at T‘ arrival.
‘ sort the schedulable tasks by deadlines.
¢ construct intervals of the schedulable tasks.

¢ perform top-level algorithm

* perform low-level scheduling algorithm at
time interval [ 1}, 1, ]

‘ recompute computational requirement i,

[Fig. 2] Algorithm for On-line Schedulability
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This algorithm computes the optimal mandato
§ P P i In this algorithm, Vi represents the amount of
service times allotted to N tasks. Let £, be an . T

mandatory service time to be allocated to task Z:
interval (9521591 There exists up to Nmutually o I o . o
o ; in interval 4. In this [Fig. 3], variable idt, idv, u
disjoint intervals, even though the actual number is ) .

and v stand for the index of task, the index of

than Nsi . . .
usually smaller since more than one tasks interval, the amount of time that is necessary to

share one same interval in many real world T
applications. This algorithm tries to assign interval execute the mandatory part of task “ir, and the

Iy to the tasks that are schedulable in the interval length of the remaining part of interval 1 idv,
I, The assignment procedure is done through respectively.  Since the value of idt or idv is

. . . . decreased by one in each iteration, the algorithm
backward iteration. That is, the assignment starts Y i &

terminates in finite step. In this algorithm, if

from the last interval Iy and finishes with the ,
«while loop > terminates due to the condition

first interval £;. A part or all of an interval is
distributed to the schedulable tasks (of which
deadlines are greater than or equal to d,) as much

such that (idt21and idvrly 5 feasible schedule
for the imprecise real-time task set can not be

found and the imprecise real-time task set can not

to allow them t te thei arts.
as to allow them to execute their mandatory parts be scheduled.

[Fig. 3] depicts the detail of this algorithm.

yi,;j=0, 1£j<i<N
idt=N, idv=N
u=my v=d -d
dy,dy=r,
while (idt=1 and idv=>1) do
if (u>v) then
Varge=Vs U=u—-v, idv=idv-1, v=d,-d,

elseif u=v then

N

Vo =W, ddt =idt—-1, u=m,, idv=idv-1, v=d, —d,,
else
Yiariy = U
if (@t > idv) then
v=v—u, idt=idt-1, u=m,
else /* for the case that idt=idv and the interval [d_,,d,] is not
Jully  distributed */
idt =idt —lL,u=my,, idv=idv-1,v=d,~d,
endif
endif
end while

if (idt 21 and idv < 1) then the imprecise system is not schedulable
else we have got the optimal schedule

[Fig. 3] Top-level schedulability check algorithm
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In this case, the algorithm is terminated.
Otherwise, ie., if «while loop » (erminates due to

the condition such that (idt =0and idv = 0), the

low-level  scheduling  algorithm  called as

“LowLevelScheduling (i,%:+1)” is performed on

time interval [7,%i]. The low-level scheduling
algorithm actually assign a processor to tasks
according to the amounts of mandatory processing
time determined by the top-level schedulability
check algorithm with EDF(Earliest Deadline Fitst)
algorithm. “RecomputeMi()”

function, the requirements of all

Finally, in the

mandatory

scheduled tasks in time interval [77,%+1] reduced

by the amount of assigned processor time. The
OnLineSchedulability() ~ algorithm repeats above
processes until no on-line task arrived.

5. Numerical Example and Complexity
Analysis

Consider a sample task set with four tasks shown

in <Table 1>. At time 1, tasks 5, T, and B>

are arrived.  Then tasks 7;, Tz, and b5 are
schedulable at time 1. Then, the 3 schedulable
tasks are sorted by deadline with ascending order

resulting as I, . T, - T, As the result of

deadline sort, intervals I, =[1,5] s I, =[5,10] R
I, =[10,12] are  constructed. Then, the
“TopLevelSchedulabilityCheck()” algorithm is

performed. The algorithm starts with idt = 3, idv

=3,u =3 and v = 2. Since the required service

time for the mandatory part of T3 (ie., 3) is

greater than the length of interval I, @), Vi3

becomes equal to 2, u is decreased by 2 (the length

of I 3) and becomes equal to 1, idt temains
unchanged, and idv is decreased by 1. In the next

iteration with idt =3, idv =2, u = 1 and v = 5, a

part of I, s assigned to Ts, since I3 has not

received enough amount of service time for its

mandatory part in the first iteration. So V32

becomes equal to 1 and idt is decreased by 1, but
idv remains unchanged. In the third iteration with

idt = 2, idv = 2, u = 3 and v = 4, a part of

remaining length of 12 (ie., 3) is allocated to task

T,. So ¥z becomes equal to 3. Finally, in the

fourth iteration, idt, idv, u and v becomes 1, 1, 3

and 4, respectively. A part of I (e, 3) is

assigned to task T, in order to allow the task to
receive the amount of service time equal to its

computational requirement for the mandatory part.

Thus, Y11 becomes equal to 3.

Then, the algorithm is terminated normally with
idt = 0, idv = 0. As the result of this assignment,

the mandatory service times allotted to T1, T, and

T become equal to 3 respectively. So, Vi,

<Table
<Table 3> depicts how all

and Y3 become equal to 3 respectively.
2> depicts the result.
variables such as idt, idv, u and v are changed.
Then, as the next step of “OnLineSchedulability()”
Algorithm, “LowLevelScheduling” (1,5)is performed.
The low-level scheduling algorithm actually assign a
processor to tasks according to the amounts of
mandatory processing time determined by the
top-level  schedulability —check algorithm  with
EDF(Earliest Deadline First) algorithm.
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[Fig. 4]
scheduling algorithm.

shows the result of the low-level

| i |

| |

1 4

[Fig. 4] Low-level scheduling result on interval [71, 4]

Next, as the final step of
“OnLineSchedulability()” Algorithm,
“RecomputeMi()” is  performed. Then, the

computational tequirements of 7 and ™, are

reduced by 3 and 1 respectively thus, the

computational requirements of  and " become

equal to O and 2 respectively.

o |

1173

Next, at time 5, task T 4 is arrived. then the

same processes are repeated. The result of the
check  algorithm
represented as <Table 4>, <Table 5>, and the result

top-level  schedulability is
of the low-level scheduling algorithm is represented
[Fig. 5] Thus, the of the
OnLineSchedulability() algorithm, we can conclude

that the on-line real-time task set shown in <Table

as as result

1> can be scheduled normally.

<Table 2> y;; at time instant 1 for the task set in
<Table 1>. (Shaded cells represent intervals in
which tasks are not schedulable)

<Table 1> A sanmple task set

Tasks | r; | oy {o; |p |4 Tasks | =[] B | 1002
T, 113 |38 |6 |5 T, 3
T, 113 |3 |6 10 T, 0 3
Ts 113 |2 |5 12 T, 0 1 2
T, 513 |5 |8 14
<Table 3> Changes of variables
iteration | idt u | idv v Vij conuents
initial 3 3 3 2 Jall v are
Zero
1 3 1 2 5 V33 = 2
2 2 3 2 4 Vi = 1
3 1 3 1 4 Yoo = 3
4 0 0 0 0O |vy =3 T,.Tyand
T; are
schedulable
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{Table 4> y;; at time instant 5 for the task set in <Table 1>.
{(Shaded cells represent intervals in which tasks are not schedulable)

lg: [].2 14]

Tasks | I=B10] | L=11012]
T, 2
Ts 2
T4 0

<Table 5> Changes of variables

iteration | idt | u [idv| v Vij comments
Initial 3 3 3 2 |all y;; are
zZero
1 3 1 2 2 V33 = 2
2 2 3 2 1 |vse =1
3 2 2 1 5 Y22 = 1
4 1 2 1 3 Yo1 ~— 2
5 0 0 0 0 Yii T 2 Ts, Tgand T;
are
schedulable
T, T, T,
| 1 | L
[ J | | |
5 7 10 13 14

[Fig. 5] Low-level scheduling result on interval [74, 4]

In the proposed algorithm for on-line
schedulability which is depicted in [Fig. 2], the
number of iterations that the “For loop” is executed
is bounded by O(N), where N is the total number
of tasks in the imprecise task system. Next, the
number of iterations that each procedure or function
in the “For loop” is executed is bounded by
O(logN) because the number of schedulable tasks
which the “DetermineRunningTasks(i)” function

determines at I arrival can be bounded by log N.
So, the complexity of the proposed algorithm in
[Fig. 2] becomes O(NlogN).

6. Conclusion

Many computer systems, such as those for open
system environment or multimedia services, need an
efficient schedulability test for on-line real-time
admission contol of new jobs. Efficient on-line
real-time schedulability tests are also useful to
various service-critical systems, such as
tele-medicine systems, tele-conferencing systems, and
multimedia services that have Quality-of-Service
(QoS) requirements  [5]. Although  various
polynomial time schedulability tests {1, 2, 3, 4, 8]
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have been proposed, they often fail to decide the
schedulability of the system precisely when the
system is heavily loaded. Furthermore, the most of
previous studies on on-line real-time schedulability
tests [1, 2, 3, 4, 8] are concentrated on periodic
task applications.

Thus, this paper presents efficient two-level
on-line real-time schedulability check algorithm
which is  composed of top-level schedulability
check and low-level scheduling. This algorithm can
be used efficiently for real-time system predictability
before dispatching of on-line real-time task system
consisted of aperiodic and preemptive task sets for
the aim of minimization of total error, minimization
of the maximum or average error, minimization of
the number of discarded optional tasks, minimization
of the number of tardy tasks, and minimization of
when the system is
efficient imprecise on-line

average response time
overloaded. The
real-time scheduling algorithms are expected on the
basis of the proposed two-level schedulability check
algorithm.
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