• 제목/요약/키워드: Apartment Transaction Price

검색결과 24건 처리시간 0.022초

코로나19 유행 시기 전후 주택유형에 따른 주택실거래가와 우울감 경험률 (Housing Transaction Prices and Depression Experience Rates According to Housing Types Before and After the COVID-19 Pandemic)

  • 이강재;김윤영;김건엽
    • 농촌의학ㆍ지역보건
    • /
    • 제49권1호
    • /
    • pp.59-70
    • /
    • 2024
  • Objectives: This research analyzed and compared housing transaction prices and depression rates according to housing types before and after the COVID-19 pandemic. Methods: Data on housing transaction prices and depression rates from 2018 to 2022 in 25 districts of Seoul, South Korea, were utilized. Dummy variables were employed to account for potential confounders influencing the relationship between the variables. Statistical analysis was conducted using R, and the relationship between depression rates and housing transaction prices was examined through Ordinary Least Squares (OLS) and panel data regression analysis. Results: The results of OLS and one-way random effects models indicated a significant relationship between apartment (p<.05) and officetel (p<.001) transaction prices and depression. However, detached/semi-detached and row/townhouse transaction prices did not exhibit a significant relationship with depression. Conclusion: It was observed that as apartment and officetel transaction prices increased in Seoul before and after the COVID-19 pandemic, depression rates also increased. Considering that changes in housing prices by housing type in South Korea may impact the mental health of local residents, it is deemed necessary to consider healthy housing and housing prices as comprehensive determinants of mental health.

서대구역 개발이 주변 아파트 시장에 미치는 영향 분석: 교육환경이 미치는 영향을 중심으로 (Effects of Seodaegu Station Development on the Surrounding Apartment Market: Focus on the Effects of Educational Environment)

  • 박현택;김진엽
    • 토지주택연구
    • /
    • 제15권2호
    • /
    • pp.89-106
    • /
    • 2024
  • 아파트는 주택 종류별 구성비에서 64%를 차지하며 주택 종류 중 가장 높은 비중을 차지하고 있다. 또한, 이는 매년 비중이 증가하고 있다. 이러한 추세 속에 아파트 가격은 국가 경제와 국민생계에 큰 영향력을 미칠 가능성이 크다. 본 연구는 최근에 개통된 서대구역 개발이 주변 아파트 시장에 미치는 영향에 대해 살펴보았다. 특히, 교육환경이 미치는 영향을 중심으로 연구를 진행하였다. 이를 위해, 국토교통부 실거래가 데이터와 헤도닉 가격모형, 공간 회귀분석을 사용하여 실증 분석한다. 연구 결과, 첫째, 서대구역의 개발은 아파트 가격에 긍정적 영향을 미치는 것으로 나타났다. 둘째, 서대구역으로부터 거리가 가까울수록 아파트 가격에 긍정적 영향을 미치는 것으로 나타났다. 셋째, 서대구역 교육환경의 발달은 아파트 가격에 긍정적 영향을 미치는 것으로 나타났다. 본 연구는 향후 지방에 개발되는 광역교통시설 개발사업 공적관리 및 아파트 가격 동향 예측을 위한 기초자료로 활용되고자 한다.

SpVAR(공간적 벡터자기회귀모델)과 GSTAR(일반화 시공간자기회귀모델)를 이용한 부산지역 주택가격의 시공간적 상관성 분석 (A Spatial-Temporal Correlation Analysis of Housing Prices in Busan Using SpVAR and GSTAR)

  • 권영우;최열
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.245-256
    • /
    • 2024
  • 2020년 이후 경기 부양을 목적으로 양적완화 및 저금리 정책이 전 세계적으로 시행되었고, 이로 인해 부동산 가격이 급등하였다. 본 연구에서는 부산광역시를 대상으로 2018년부터 2022년까지의 부동산 급등 시기의 주택유형별 매매가격, 임대가격 간의 관계를 시공간적으로 분석하였다. 분석자료는 국토교통부 실거래가 자료를 바탕으로 읍면동 단위의 주택유형, 거래유형, 월별 실거래가 자료를 구축하였다. 분석모형으로는 시공간 분석 모델 중 변수간의 시간적, 공간적 영향을 파악하는데 사용되는 SpVAR(공간적 벡터자기회귀모델)과 각 지역이 해당 변수에서 미치는 영향을 파악하는데 사용되는 GSTAR(일반화 시공간자기회귀모델)을 사용하였다. 분석결과 부산광역시 아파트 매매가격은 대상 지역을 포함한 주변 지역 전체의 아파트, 연립다세대, 단독다가구 매매가격에 정의 영향을 주는 것으로 나타났다. 반면, 아파트 매매가격이 증가함에 따라 해당 수요가 주변 지역의 아파트 임대수요로 전환되며, 시간의 경과에 따라 아파트 매매가격이 다시 하락하는 모습을 확인할 수 있었다. 아파트의 경우 이러한 시공간적 전이효과가 긍정적으로 나타났으나, 연립다세대와 단독다가구 주택의 경우 원도심 지역에 정의 효과가 집중되는 것으로 나타났다.

반복매매모형을 활용한 서울시 오피스 벤치마크 가격지수 개발 및 시험적 적용 연구 (The Development and Application of Office Price Index for Benchmark in Seoul using Repeat Sales Model)

  • 류강민;송기욱
    • 토지주택연구
    • /
    • 제11권2호
    • /
    • pp.33-46
    • /
    • 2020
  • As the fastest growing office transaction volume in Korea, there's been a need for development of indicators to accurately diagnose the office capital market. The purpose of this paper is experimentally calculate to the office price index for effective benchmark indices in Seoul. The quantitative methodology used a Case-Shiller Repeat Sales Model (1991), based on actual multiple office transaction dataset with over minimum 1,653 ㎡ from Q3 1999 to 4Q 2019 in the case of 1,536 buildings within Seoul Metropolitan. In addition, the collected historical data and spatial statistical analysis tools were treated with the SAS 9.4 and ArcGIS 10.7 programs. The main empirical results of research are briefly summarized as follows; First, Seoul office price index was estimated to be 344.3 point (2001.1Q=100.0P) at the end of 2019, and has more than tripled over the past two decades. it means that the sales price of office per 3.3 ㎡ has consistently risen more than 12% every year since 2000, which is far above the indices for apartment housing index, announced by the MOLIT (2009). Second, between quarterly and annual office price index for the two-step estimation of the MIT Real Estate Research Center (MIT/CRE), T, L, AL variables have statistically significant coefficient (Beta) all of the mode l (p<0.01). Third, it was possible to produce a more stable office price index against the basic index by using the Moore-Penrose's pseoudo inverse technique at low transaction frequency. Fourth, as an lagging indicators, the office price index is closely related to key macroeconomic indicators, such as GDP(+), KOSPI(+), interest rates (5-year KTB, -). This facts indicate that long-term office investment tends to outperform other financial assets owing to high return and low risk pattern. In conclusion, these findings are practically meaningful to presenting an new office price index that increases accuracy and then attempting to preliminary applications for the case of Seoul. Moreover, it can provide sincerely useful benchmark about investing an office and predicting changes of the sales price among market participants (e.g. policy maker, investor, landlord, tenant, user) in the future.

Prediction Model of Real Estate Transaction Price with the LSTM Model based on AI and Bigdata

  • Lee, Jeong-hyun;Kim, Hoo-bin;Shim, Gyo-eon
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.274-283
    • /
    • 2022
  • Korea is facing a number difficulties arising from rising housing prices. As 'housing' takes the lion's share in personal assets, many difficulties are expected to arise from fluctuating housing prices. The purpose of this study is creating housing price prediction model to prevent such risks and induce reasonable real estate purchases. This study made many attempts for understanding real estate instability and creating appropriate housing price prediction model. This study predicted and validated housing prices by using the LSTM technique - a type of Artificial Intelligence deep learning technology. LSTM is a network in which cell state and hidden state are recursively calculated in a structure which added cell state, which is conveyor belt role, to the existing RNN's hidden state. The real sale prices of apartments in autonomous districts ranging from January 2006 to December 2019 were collected through the Ministry of Land, Infrastructure, and Transport's real sale price open system and basic apartment and commercial district information were collected through the Public Data Portal and the Seoul Metropolitan City Data. The collected real sale price data were scaled based on monthly average sale price and a total of 168 data were organized by preprocessing respective data based on address. In order to predict prices, the LSTM implementation process was conducted by setting training period as 29 months (April 2015 to August 2017), validation period as 13 months (September 2017 to September 2018), and test period as 13 months (December 2018 to December 2019) according to time series data set. As a result of this study for predicting 'prices', there have been the following results. Firstly, this study obtained 76 percent of prediction similarity. We tried to design a prediction model of real estate transaction price with the LSTM Model based on AI and Bigdata. The final prediction model was created by collecting time series data, which identified the fact that 76 percent model can be made. This validated that predicting rate of return through the LSTM method can gain reliability.

세금정책이 중소도시의 공동주택 매매가격에 미치는 단기 영향분석 (Analysis of Short-Term Impact of Tax Policy on Housing Purchase Price in Small and Medium-sized Cities in Korea)

  • 오권영;정진원;이동훈
    • 한국건축시공학회지
    • /
    • 제22권1호
    • /
    • pp.81-90
    • /
    • 2022
  • 전국 공동주택 매매가격이 상승하고 중소도시 지역이 투기과열지구 및 조정대상지역 으로 선정되었다. 그리고 세금정책은 부동산 가격안정화를 위해 꾸준히 변화 되고 있다. 본 연구는 세금정책이 중소도시 공동주택 매매가격에 미치는 영향에 대한 기초적인 분석을 목적으로 한다. 본 연구는 준공년도가 1990년 이후 2015년 이전의 대전지역 공동주택을 선정하였다. 또한 세금정책을 증세와 감세를 기준으로 하여 규제정책과 완화정책으로 나누어 공동주택 매매가격 변동에 대하여 전후 1년의 단기적 차이를 분석한다. 또한 본 연구는 부동산 정책이 발현된 시점과 대전지역 공동주택 실거래가를 분석 대상으로 설정하였고, NPV 기법 및 T-Test 결과를 통해서 세금정책과 공동주택 매매가격의 상관관계를 분석하였다. 연구의 결과 대부분의 세금정책 발현시점에서 단기적으로는 공동주택 매매가격의 변화를 확인할 수 있었다.

Forecasting Housing Demand with Big Data

  • Kim, Han Been;Kim, Seong Do;Song, Su Jin;Shin, Do Hyoung
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.44-48
    • /
    • 2015
  • Housing price is a key indicator of housing demand. Actual Transaction Price Index of Apartment (ATPIA) released by Korea Appraisal Board is useful to understand the current level of housing price, but it does not forecast future prices. Big data such as the frequency of internet search queries is more accessible and faster than ever. Forecasting future housing demand through big data will be very helpful in housing market. The objective of this study is to develop a forecasting model of ATPIA as a part of forecasting housing demand. For forecasting, a concept of time shift was applied in the model. As a result, the forecasting model with the time shift of 5 months shows the highest coefficient of determination, thus selected as the optimal model. The mean error rate is 2.95% which is a quite promising result.

  • PDF

중공업 오염원이 부동산 가격에 대한 미치는 영향 중국 마안산시 중심으로 (The Impacts of Heavy Industrial Pollution Sources on The Real Estate Price Evidence from Maanshan City, China)

  • 왕윤동;장쯔신;황수
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.717-729
    • /
    • 2020
  • 현대사회의 환경오염 문제는 공업화에 따라 급격하게 변화하고 있기 때문에, 환경오염 문제는 다양한 분야에 직간접적인 영향을 미치고 있다. 특히 중공업 오염원은 입지 선택과 부동산 가치에 주요한 변수로 작용될 수 있다. 따라서 본 연구에서는 중국의 대표적인 철강 도시인 마안산시에 있는13개 아파트 단지의 거래 데이터에 기반하고 헤도닉 가격 모형 (Hedonic Price Model)을 이용해서 환경오염 중에 중공업 오염을 중심으로 부동산 가격에 대해서 미친 영향을 연구했고 결론을 내렸다. 연구 결과는 주택에서 오염원의 거리가 멀어 질수록 주택 가격에 인상 효과가 있다.

딥러닝과 머신러닝을 이용한 아파트 실거래가 예측 (Apartment Price Prediction Using Deep Learning and Machine Learning)

  • 김학현;유환규;오하영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.59-76
    • /
    • 2023
  • 코로나 시대 이후 아파트 가격 상승은 비상식적이었다. 이러한 불확실한 부동산 시장에서 가격 예측 연구는 매우 중요하다. 본 논문에서는 다양한 부동산 사이트에서 자료 수집 및 크롤링을 통해 2015년부터 2020년까지 87만개의 방대한 데이터셋을 구축하고 다양한 아파트 정보와 경제지표 등 가능한 많은 변수를 모은 뒤 미래 아파트 매매실거래가격을 예측하는 모델을 만든다. 해당 연구는 먼저 다중 공선성 문제를 변수 제거 및 결합으로 해결하였다. 이후 의미있는 독립변수들을 뽑아내는 전진선택법(Forward Selection), 후진소거법(Backward Elimination), 단계적선택법(Stepwise Selection), L1 Regularization, 주성분분석(PCA) 총 5개의 변수 선택 알고리즘을 사용했다. 또한 심층신경망(DNN), XGBoost, CatBoost, Linear Regression 총 4개의 머신러닝 및 딥러닝 알고리즘을 이용해 하이퍼파라미터 최적화 후 모델을 학습시키고 모형간 예측력을 비교하였다. 추가 실험에서는 DNN의 node와 layer 수를 바꿔가면서 실험을 진행하여 가장 적절한 node와 layer 수를 찾고자 하였다. 결론적으로 가장 성능이 우수한 모델로 2021년의 아파트 매매실거래가격을 예측한 후 실제 2021년 데이터와 비교한 결과 훌륭한 성과를 보였다. 이를 통해 머신러닝과 딥러닝은 다양한 경제 상황 속에서 투자자들이 주택을 구매할 때 올바른 판단을 할 수 있도록 도움을 줄 수 있을 것이라 확신한다.

생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용 (Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models)

  • 김수아;권미주;김현희
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.209-216
    • /
    • 2024
  • 부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 텍스트 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있으므로 부동산 매매 가격 예측에 있어 중요한 요인이다. 본 연구에서는 뉴스 기사를 감성 분석하여 그 결과를 뉴스 감성 지수로 점수화 한 후 부동산 가격 예측 모델에 적용하였다. 먼저 기사 본문을 요약 후 요약된 내용을 바탕으로 생성 AI를 활용하여 긍정, 부정, 중립으로 분류한 다음 총 점수를 산출하였고 이를 부동산 가격 예측 모델에 적용하였다. 부동산 가격 예측 모델로는 Multi-head attention LSTM 모델과 Vector Auto Regression 모델을 사용하였다. 제안하는 뉴스 감성 지수를 적용하지 않은 LSTM 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 0.60, 0.872, 1.117의 Root Mean Square Error (RMSE)을 보였으며, 뉴스 감성 지수를 적용한 LSTM 예측 모델은 각각 0.40, 0.724, 1.03의 RMSE값을 나타낸다. 또한 뉴스 감성 지수를 적용하지 않은 Vector Auto Regression 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 1.6484, 0.6254, 0.9220, 뉴스 감성 지수를 적용한 Vector Auto Regression 예측 모델은 각각 1.1315, 0.3413, 1.6227의 RMSE 값을 나타낸다. 앞선 아파트 매매가격지수 예측 모델을 통해 사회/경제적 동향을 반영한 부동산 시장 가격 변동을 예측할 수 있을 것으로 보인다.