• Title/Summary/Keyword: Antisense

Search Result 207, Processing Time 0.027 seconds

Antisense GA 3β-Hydroxylase Gene Transferred to Rice Plants. (Antisense gibberellin 3β-hydroxylase발현 형질전환벼)

  • 강용원;윤용휘;김길웅;이인중;신동현
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.644-649
    • /
    • 2004
  • During plant development, active gibberellins (GAs) control many aspects of plant growth and development including seed germination, stem elongation, flower induction, anther development and seed growth. To understand the biosynthesis and functional role of active GAs in high plants, this study investigated GA 3$\beta$-hydroxylase gene en-coding $GA_1$ and$GA_4$ catalizing last step in GA biosynthetic pathway. The antisense GA 3$\beta$-hydroxylase gene was inserted into expression vector, pIG121-Hm. Calli derived from mature seeds of rice (Oryza satiiva L. cv. Donjinbyeo) were co-cultivated with Agrohacterium tumefaciens EHA101 earring a pIG121-Hm containing hygromycin resistance ($Hyg^r$) and antisense GA 3$\beta$-hydroxylase gene. Seventeen transgenic plants obtained inhibiting GA 3$\beta$-hydroxylase. Transgenic plants had shorter plant height more than that of the Dongjinbyeo. Stable integration of antisense GA 3$\beta$-hydroxylase gene was confirmed by polymerase chain reaction of genomic DNA isolated from the leaf organs of the $T_o$ generation.

Phenotypic and molecular characteristics of second clone (T0V2) plants of the LeLs-antisense gene-transgenic chrysanthemum line exhibiting non-branching (무측지성 국화 형질전환 계통 영양번식 제2세대의 형태적 및 분자생물학적 특성)

  • Lee, Su Young;Kim, Jeong-Ho;Cheon, Kyeong-Seong;Lee, Eun Kyung;Kim, Won Hee;Kwon, O Hyeon;Lee, Hye Jin
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.192-197
    • /
    • 2013
  • This study examined the phenotypic and molecular characteristics of the $2^{nd}$ clone ($T_0V_2$) plants of LeLs-antisense gene-transgenic chrysanthemum line (LeLs80) that exhibited non-branching, proving the relevance of these characteristics as a factor for use in environmental risk assessment. Results of the Southern blot analysis showed that three copies of the LeLs-antisense gene were introduced into the transgenic line, and northern analysis showed that the transcripted gene was normally expressed in the transgenic line. A flanking T-DNA sequencing method was used to determine that sequences of 184 and 464 bps flanked the LeLs-antisense gene in the transgenic line. These sequences, respectively, matched the 35S promoter for expression of the npt II gene and the NOS terminator for expression of the LeLs-antisense gene within the pCAMBIA 2300 vector.

Synthesis of 3β [L-Lysinamide-carbamoyl] Cholesterol Derivatives by Solid-Phase Method and Characteristics of Complexes with Antisense Oligodeoxynucleotides

  • Lee, Eun-Jung;Lee, Min-hyung;Park, Jong-Sang;Choi, Joon-Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1020-1024
    • /
    • 2006
  • In this report, we describe the synthesis of mono- and di-valent cationic $3\beta$ [L-Lysinamide-carbamoyl] cholesterol (K-Chol) derivatives by solid-phase peptide synthesis method and the characteristics of K-Chol/antisense oligodeoxynucleotide (ODN) complexes. K-Chol was able to interact with antisense ODNs electrostatically and constructed nanometer-sized complexes of 50-100 nm in diameter. The formation of K-Chol/antisense ODN complexes was demonstrated by non-denaturing polyacrylamide gel electrophoresis assay and atomic force microscopy. The cell-associated radioactivity was measured to monitor the cellular uptake of the complexes containing radioactive antisense ODNs using HL 60 cells.

Liposome-mediated Induction of Apoptosis of Human Hepatoma Cells by C-Myc Antisense Phosphorothioate Oligodeoxynucleotide and 5-Fluorouracil

  • Yuan, Yuan;Cai, Hui;Yang, Xiao-Jun;Li, Wei;He, Jin;Guo, Tian-Kang;Chen, Yi-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5529-5533
    • /
    • 2014
  • Background: The aim of this study was to investigate the effect of a c-myc antisense oligodeoxynucleotide and 5-fluorouracil on the expression of c-myc, invasion and proliferation of HEPG-2 liver cancer cells. Materials and Methods: HEPG-2 cells were treated with lipiosome-mediated c-myc ADSON and 5-fluorouracil. The proliferation inhibition rate and invasion were measured by MTT and invasion assay, respectively. Cell apoptosis was detected by flow cytometry and expression of c-myc by RT-PCR and immunohistochemistry. Results: The proliferation inhibition rate was significantly higher in the antisense oligodeoxynucleotide added-5-fluorouracil group than single antisense oligodeoxynucleotide or 5-fluorouracil group (p<0.05). G0/G1 cells in the antisense oligodeoxynucleotide group and S cells in the 5-fluorouracil groups were significantly increased than that in the control group, respectively (P<0.01). The amplification strips of PCR products in 5-FU, ASODN and combination groups were significantly weaker than that in the control group (P<0.01). The percentage of c-myc-protein-positive cells were significantly lower in antisense oligodeoxynucleotide, 5-fluorouracil and combination groups than that in the control group (P<0.01). Conclusions: A liposome-mediated c-myc antisense oligodeoxynucleotide and 5-fluorouracil can inhibit the proliferation and invasion of liver cancer cells by reducing the expression of c-myc. A c-myc antisense oligodeoxynucleotide can increase the sensitivity of liver cancer cells to 5-fluorouracil and decrease the dosage of the agent necessary for efficacy, providing an experimental basis for the clinical therapy of liver cancer.

NUCLEAR MATRIX CHANGES BY THE ANTISENSE INHIBITION OF TRANSGLUTAMINASE C IN IN VITRO CULTURE OF SNU-1 CELLS (체외 배양된 SNU-1 세포주에서 transglutaminase C antisense inhibition이 일으키는 세포핵질 변화)

  • Jang, Jae-Hyun;Lee, Suk-Keun;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.2
    • /
    • pp.86-94
    • /
    • 2003
  • It has been known that transglutaminase C (TGase C, TGase II) is directly participated in the DNA organization of chromosome, and affects the cellular processes such as proliferation, differentiation, and apoptosis of cells, but still not known what mechanism is working on. In this study, the cytogenetic and the immunohistochemical methods were used to observe the TGase C expression in the nuclear chromosome of the proliferating cells, especially in mitotic stage. The human gastric adenocarcinoma (SNU-1) cell line was used for immunohistochemistry and antisense inhibition study in vitro. The present study was also aimed to disclose the efficiency of antisense inhibition by using antisense oligonucleotide DNA labeled with fluorescence, and found that anti-TGase C probe was diffusely infiltrated into the cytoplasm and the nucleus of the cell. By the antisense inhibition the nuclei of SNU-1 cells became rough nuclear shape, as they were greatly reduced in TGase C immunoreactivity both for the normal and apoptotic SNU-1 cells. However, it is clearly presumed that the TGase C directly interacts with the chromosome of SNU-1 cells and it may play an important role in the division and organization of the chromosome during the mitotic stage.

EGFR Antisense Oligonucleotides Encapsulated with Nanoparticles Decrease EGFR, MAPK1 and STAT5 Expression in a Human Colon Cancer Cell Line

  • Najar, Ahmad Gholamhoseinian;Pashaei-Asl, Roghiyeh;Omidi, Yadollah;Farajnia, Safar;Nourazarian, Ali Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.495-498
    • /
    • 2013
  • Epidermal growth factor receptor (EGFR) is over-expressed in several human cancers. This would suggest that inhibition of EGFR is a reasonable approach for cancer treatment. In this study we investigated EGFR blocking and its effects on the mediated signaling such as MAPK and STATb in HT29 cells. For this aim we used FITC-labeled EGFR antisense oligonucleotides encapsulated with PAMAM nanoparticles to inhibit EGFR expression. Cellular uptake of antisense was investigated by fluorescence microscopy and flow cytometry analysis. The effect of EGFR antisense on the expression of EGFR in HT29 cells was examined by real time PCR and Western blots, which showed that antisense encapsulated with PAMAM decreased the level of EGFR mRNA and protein. In addition, real time PCR results confirmed that EGFR inhibition had an effective role in the reduction of EGFR dependent downstream genes. In conclusion, EGFR antisense encapsulated with PAMAM nanoparticles down regulated EGFR and EGFR-mediated genes.

New Antisense RNA Systems Targeted Against Plant Pathogens

  • Matousek, J.;Vrba, L.;Kuchar, M.;Pavingerova, D.;Orctova, L.;Ptacek, J.;Schubert, J.;Steger, G.;Beier, H.;Riesner, D.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.379-385
    • /
    • 2000
  • tRNA and 7SL RNA based antisense vehicles were prepared by inserting conserved anti-viral and anti-viroid domains. Anti-PVS coat protein leader sequence (ACPL) and antistructural antihairpin domain of PSTVd (AHII) were inserted in tRNA cassette; anti- zing finger domain of PVS, AHII and anti hop latent viroid ribozyme were inserted in 7SL RNA gene isolated from A. thaliana. These constructs were shown to be transcribed both, in in vitro and in in vivo conditions. However, it followed from our work that closely linked position of PoIII reference genes and PoIIII antisense genes within T-DNA lead to the impairment of RNA expression in transgenic plants. To assay in vivo transcription of antisense genes, hairy root potato cultures were established using h. tumefaciens A4-24 bearing both, Ri plasmid and PoIII-promoterless plant expression vectors with antisense RNA genes. Expression of antisense RNA in transgenic potato tissues was proven by specific RT-PCR reactions.

  • PDF

Effects on the Initiation of Simian Virus 40 DNA Replication by Antisense RNA

  • Jeong, Bo-Won;Kang, Hyen-Sam
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.538-545
    • /
    • 1995
  • When DNA replication of simian virus 40 (SV40) is initiated on the replication origin, the regions containing the initiation sites of DNA primase, which participates in the transient RNA primer synthesis for formation of Okazaki fragments in the lagging strand, were chosen as the target sites of antisense RNA for studies of the inhibition of SV40 DNA replication. Four recombinant transcription vectors, pUC-PrI, pUC-PrII, pGEM-PrBS, and pGEM-PrSN, coding antisense RNA, were constructed. Four antisense RNAs (named as I, II, BS, and SN) having the size of 18, 19,58, and 123 nts, respectively, were made from the transcription vectors by in vitro transcription. And then, antisense RNA in the concentration of 2${\mu}m$ were added to COS cells transfected with pATSV-W which is a recombinant plasmid containing the SV40 origin of replication. The inhibitory extent of DNA replication was measured by DpnI resistance and was confirmed by measurement of transient RNA primer synthesis. The result shows that six combinations of antisense RNA (I, II, BS, SN, I+SN, and BS+SN) lead to the inhibition of SV40 DNA replication by up to 85%.

  • PDF

Photo-controlled gene expression by fluorescein-labeled antisense oligonucleotides in combination with visible light irradiation

  • Ito, Atsushi;Kaneko, Tadashi;Miyamoto, Yuka;Ishii, Keiichiro;Fujita, Hitoshi;Hayashi, Tomonori;Sasaki, Masako
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.451-453
    • /
    • 2002
  • A new concept of "photo" -antisense method has been evaluated, where the inhibition of gene expression by the conventional antisense method is enhanced by photochemical binding between antisense oligonucleotides conjugated with photo-reactive compound and target mRNA or DNA. Fluorescein labeled oligodeoxyribonucleotides (F-DNA) was delivered to cell nuclei in the encapsulated form in multilamellar lecithin liposomes with neutral charge. F-DNA was previously shown to photo-bind to the complementary stranded DNA, and the delivery system using neutral liposome to be effective in normal human keratinocytes. In the present study, we used human kidney cancer G401.2/6TG.1 cell line to be advantageous in reproducible experiments. p53 was adopted as a target gene since antisense sequence information has been accumulated. The nuclear localization ofF-DNA was identified by comparing the fluorescence ofF-DNA with that of Hoechst 33258 under fluorescence microscope. After 7hr incubation to accumulate p53 protein induced by UV -B, p53 protein was quantified by Western blot. After 2hrs from F-DNA application, about 30% of cell population incorporated F-DNA in their nuclei with some morphological change possibly due to liposomal toxicity. Irradiation of visible light longer than 400nm from solar simulator at this time enhanced the inhibitory action of antisense F-DNA. The present results suggest that photo-antisense method is promising to control gene expression in time and space dependent manner. Further improvement of F-DNA delivery to cancer cells in the stability and toxicity is in progress. progress.

  • PDF

DOWN REGULATION OF TGF-$\beta$ GENE EXPRESSION BY ANTISENSE OLIGO-DEOXYNUCLEOTIDES INCREASE rIFN-${\gamma}$-INDUCED NITRIC OXIDE SYNTHESIS IN MURINE PERITONEAL MACROPHAGES

  • Jun, Chang-Duk;Kim, Su-Ung;Lee, Seong-Yong;Chung, Hun-Taeg
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.78-78
    • /
    • 1995
  • Increasing evidence indicates that the production of nitric oxide (NO) by inducible NO synthase (NOS) is tightely regulated. Transforming growth factor-${\beta}$ (TGF-${\beta}$) is a homodimeric protein secreted during macrophage activation, but several lines of evidence suggest that TGF-${\beta}$ is selectively suppressive for macrophage NO production. We therefore reasoned that a strategy employing oligodeoxynucleotides(ODNs) complemently to TGF-${\beta}$ mRNA (antisense ODNs) might increase NO production in IFN-${\gamma}$-treated murine peritoneal macrophages. To evaluate this concept, we tested the effects of antisense ODNs targeted to TGF-${\beta}$ mRNA (25-mer ODNs complemently to TGF-${\beta}$mRNA sequences) by introducing it into the medium of cultured macrophages. Phosphorothiolation of ODNs were employed to retard their degradation. Antisense ODNs had no effect on NO production by itself, whereas IFN-${\gamma}$ alone had modest effect. When antisense ODNs were used in combination with IFN-${\gamma}$, there was a marked cooperative induction of NO production, These effects of antisense ODNs were associated with decreased TGF-${\beta}$ expression in activated macrophages. ODNs with the same nucleotides but a scrambled sequence had no effect. Adding anti-TGF-${\beta}$ antibodies to the IFN-${\gamma}$-treated macrophages mimicked the positive effect of antisense ODNs on NO production. In addition, the effects of either antisense ODNs or anti-TGF-${\beta}$ antibodies were blocked by adding TGF-${\beta}$ in cultured macrophages. These results indicate that the generation of TGF-${\beta}$ by activated macrophages provides a self-regulating mechanism by which the temporal and perhaps spatial production of NO, a reactive and potentially toxic mediator, can be finely regulated.

  • PDF