• 제목/요약/키워드: Antiparallel $\beta$-sheet

검색결과 4건 처리시간 0.016초

Dimerization of Fibril-forming Segments of α-Synuclein

  • Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1845-1850
    • /
    • 2009
  • We have performed replica-exchange molecular dynamics (REMD) simulations on the dimer formation of fibrilforming segments of $\alpha$-Synuclein (residues 71 - 82) using implicit solvation models with two kinds of force fields- AMBER parm99SB and parm96. We observed spontaneous formation of dimers from the extensive simulations, demonstrating the self-aggregating and fibril forming properties of the peptides. Secondary structure profile and clustering analysis showed that dimers with antiparallel $\beta$-sheet conformations, stabilized by well-defined hydrogen boding, are major species corresponding to global free energy minimum. Parallel dimers with partial $\beta$-sheets are found to be off-pathway intermediates. The relative instability of the parallel arrangements is due to the repulsive interactions between bulky and polar side chains as well as weaker backbone hydrogen bonds.

Computational Study on Oligomer Formation of Fibril-forming Peptide of α-Synuclein

  • Park, Seong-Byeong;Yoon, Je-Seong;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.848-854
    • /
    • 2012
  • We have studied the oligomerization of a fibril-forming segment of ${\alpha}$-Synulcein using a replica exchange molecular dynamics (REMD) simulation. The simulation was performed with trimers and tetramers of a 12 amino acid residue stretch (residues 71-82) of ${\alpha}$-Synulcein. From extensive REMD simulations, we observed the spontaneous formation of both trimer and tetramer, demonstrating the self-aggregating and fibril-forming properties of the peptides. Secondary structure profile and clustering analysis illustrated that antiparallel ${\beta}$-sheet structures are major species corresponding to the global free energy minimum. As the size of the oligomer increases from a dimer to a tetramer, conformational stability is increased. We examined the evolution of simple order parameters and their free energy profiles to identify the process of aggregation. It was found that the degree of aggregation increased as time passed. Tetramer formation was slower than trimer formation and a transition in order parameters was observed, indicating the full development of tetramer conformation which is more stable than that of the trimer. The shape of free energy surface and change of order parameter distributions indicate that the oligomer formation follows a dock-and-lock process.

호박벌 유래 디펜신 유전자의 분자적 특성분석 및 항균 활성 (Antimicrobial activity and characterization for defensin of synthetic oligopeptides derived from Bombus ignitus)

  • 강희윤;김인우;이준하;권용남;윤은영;윤형주;김성렬;김익수;황재삼
    • 한국잠사곤충학회지
    • /
    • 제50권2호
    • /
    • pp.161-165
    • /
    • 2012
  • 호박벌 유래 디펜신의 전체 아미노산 서열의 구조 분석 후에 항균활성을 갖는 서열을 선발하였고, 전체 및 펩타이드 길이와 구조적 차이에 대한 종합적인 결과로서 기존에 보고되어진 ${\alpha}$-helix 구조의 펩타이드 보다는 ${\beta}$-sheet의 일부 서열과 ${\alpha}$-helix의 서열이 공존할 때 항균 활성이 보다 뛰어남을 확인하였다. 특히 시스테인-아르기닌 (38C-39R)이 포함되어 있는 펩타이드 서열에서 항균력이 우수하였고, 이는 세포벽에 친화력이 있는 염기성 펩타이드의 특성으로 예상하고 있다.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.